Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Langmuir ; 39(11): 3871-3882, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36878006

RESUMEN

Three-dimensional photoactive self-standing porous materials have been synthesized through the integration of soft chemistry and colloids (emulsions, lyotrope mesophases, and P25 titania nanoparticles). Final multiscale porous ceramics bear 700-1000 m2 g-1 of micromesoporosity depending on the P25 nanoparticle contents. The applied thermal treatment does not affect the P25 anatase/rutile allotropic phase ratio. Photonic investigations correlated with the foams' morphologies suggest that the larger amount of TiO2 that is introduced, the larger the walls' density and the smaller the mean size of the void macroscopic diameters, with both effects inducing a reduction of the photon transport mean free path (lt) with the P25 content increase. A light penetration depth in the range of 6 mm is reached, thus depicting real 3D photonic scavenger behavior. The 3D photocatalytic properties of the MUB-200(x) series, studied in a dynamic "flow-through" configuration, show that the highest photoactivity (concentration of acetone ablated and concentration of CO2 formed) is obtained with the highest monolith height (volume) while providing an average of 75% mineralization. These experimental results validate the fact that these materials, bearing 3D photoactivity, are paving the path for air purification operating with self-standing porous monolith-type materials, which are much easier to handle than powders. As such, the photocatalytic systems can now be advantageously miniaturized, thereby offering indoor air treatment within vehicles/homes while drastically limiting the associated encumbrance. This volumetric counterintuitive acting mode for light-induced reactions may find other relevant advanced applications for photoinduced water splitting, solar fuel, and dye-sensitized solar cells while both optimizing photon scavenging and opening the path for the miniaturization of the processes where encumbrance or a foot-print penalty would be advantageously circumvented.

2.
Soft Matter ; 15(41): 8302-8312, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31549700

RESUMEN

The increase of plastics and microplastics in the environment is a major environmental challenge. Still, little is known about the degradation kinetics of macroplastics into smaller particles, under the joint actions of micro-organisms and physico-chemical factors, like UV or mechanical constraints. In order to gain insight into (bio)-degradation in various media, we perform accelerated erosion experiments by using a well-known enzymatic system. We show that the microstructure of semi-crystalline polymers plays a crucial role in the pattern formation at their surface. For the first time, the release of fragments of micrometric size is evidenced, through a mechanism that does not involve fracture propagation. A geometric erosion model allows a quantitative understanding of erosion rates and surface patterns, and provides a critical heterogeneity size, parting two types of behavior: spherulites either released, or eroded in situ. This new geometric approach could constitute a useful tool to predict the erosion kinetics and micro-particle generation in various media.

3.
Proc Natl Acad Sci U S A ; 113(40): 11088-11093, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27647890

RESUMEN

Graphene oxide (GO), the main precursor of graphene-based materials made by solution processing, is known to be very stiff. Indeed, it has a Young's modulus comparable to steel, on the order of 300 GPa. Despite its very high stiffness, we show here that GO is superflexible. We quantitatively measure the GO bending rigidity by characterizing the flattening of thermal undulations in response to shear forces in solution. Characterizations are performed by the combination of synchrotron X-ray diffraction at small angles and in situ rheology (rheo-SAXS) experiments using the high X-ray flux of a synchrotron source. The bending modulus is found to be 1 kT, which is about two orders of magnitude lower than the bending rigidity of neat graphene. This superflexibility compares with the fluidity of self-assembled liquid bilayers. This behavior is discussed by considering the mechanisms at play in bending and stretching deformations of atomic monolayers. The superflexibility of GO is a unique feature to develop bendable electronics after reduction, films, coatings, and fibers. This unique combination of properties of GO allows for flexibility in processing and fabrication coupled with a robustness in the fabricated structure.

4.
Eur Phys J E Soft Matter ; 41(3): 30, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29546498

RESUMEN

Since the discovery of graphene oxide (GO), the most accessible of the precursors of graphene, this material has been widely studied for applications in science and technology. In this work, we describe a procedure to obtain GO dispersions in water at high concentrations, these highly dehydrated dispersions being in addition fully redispersible by dilution. With the availability of such concentrated samples, it was possible to investigate the structure of hydrated GO sheets in a previously unexplored range of concentrations, and to evidence a structural phase transition. Tentatively applying models designed for describing the small-angle scattering curve in the Smectic A (or [Formula: see text]) phase of lyotropic systems, it was possible to extract elastic parameters characterising the system on the dilute side of the transition, thereby evidencing the relevance of both electrostatic and steric (Helfrich) interactions in stabilising aqueous lamellar stacks of GO sheets.

5.
Langmuir ; 33(13): 3223-3233, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28291357

RESUMEN

The self-assembling properties of glycerol esters in water are well known. Still, few data on glycerol monoesters of undecylenic acid are available. The aim of this study was to highlight the behavior of glycerol monoundecenoate (GM-C11:1) in different diluted and concentrated states. Its self-assembling properties in water and upon solid inorganic surfaces were investigated in the diluted state using surface tension experiments, atomic force microscopy, and cryogenic transmission electron microscopy studies. In the concentrated state, the gelling properties in the presence of water were investigated using polarized light microscopy, differential scanning calorimetry (DSC), and small-angle X-ray scattering (SAXS) experiments. GM-C11:1 at 100 mg/L self-assembles at the liquid/air interfaces as aggregates of approximately 20 nm in diameter, organized into concentric forms. These aggregates are spherical globules composed of several molecules of GM-C11:1. At higher concentrations (1000 and 104 mg/L), GM-C11:1 is able to uniformly coat liquid/air and liquid/solid interfaces. In bulk, GM-C11:1 forms spontaneously aggregates and vesicles. In a more concentrated state, GM-C11:1 assembles into lamellar Lß and Lα forms in water. By cross-referencing SAXS and DSC findings, we were able to distinguish between interlamellar water molecules strongly bound to GM-C11:1 and other molecules remaining unbound and considered to be "mobile" water. The percentage of water strongly bound was proportional to the percentage of GM-C11:1 in the system. In this case, GM-C11:1 appears to be an effective molecule for surface treatments for which water retention is important.


Asunto(s)
Ácidos Grasos Monoinsaturados/química , Glicerol/química , Agua/química , Ácidos Grasos Monoinsaturados/síntesis química , Glicerol/síntesis química , Estructura Molecular
6.
Langmuir ; 32(2): 401-10, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26700689

RESUMEN

Saturated long chain fatty acids (sLCFA, e.g., C14:0, C16:0, and C18:0) are potentially the greenest and cheapest surfactants naturally available. However, because aqueous sodium soaps of sLCFA are known to crystallize, the self-assembly of stable bilayer vesicles has not been reported yet. Here, by using such soaps in combination with guanidine hydrochloride (GuHCl), which has been shown recently to prevent crystallization, we were capable of producing stable bilayer vesicles made of sLCFA. The phase diagrams were established for a variety of systems showing that vesicles can form in a broad range of composition and pH. Both solid state NMR and small-angle neutron scattering allowed demonstrating that in such vesicles sLCFA are arranged in a bilayer structure which exhibits similar dynamic and structural properties as those of phospholipid membranes. We expect these vesicles to be of interest as model systems of protocells and minimal cells but also for various applications since fatty acids are potentially substitutes to phospholipids, synthetic surfactants, and polymers.


Asunto(s)
Células Artificiales/química , Ácidos Grasos/química , Membrana Dobles de Lípidos/química , Células Artificiales/ultraestructura , Guanidina/química , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Transmisión , Transición de Fase
7.
Angew Chem Int Ed Engl ; 55(43): 13475-13479, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27659782

RESUMEN

Encapsulating biological materials in lipid vesicles is of interest for mimicking cells; however, except in some particular cases, such processes do not occur spontaneously. Herein, we developed a simple and robust method for encapsulating proteins in fatty acid vesicles in high yields. Fatty acid based, membrane-free coacervates spontaneously sequester proteins and can reversibly form membranous vesicles upon varying the pH value, the precrowding feature in coacervates allowing for protein encapsulation within vesicles. We then produced enzyme-enriched vesicles and show that enzymatic reactions can occur in these micrometric capsules. This work could be of interest in the field of synthetic biology for building microreactors.

8.
Langmuir ; 30(18): 5075-81, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24758608

RESUMEN

There is strong demand in the field of NMR for simple oriented lipid supramolecular assemblies, the constituents of which can be fully deuterated, for specifically studying the structure of host protonated molecules (e.g., peptides, proteins...) in a lipid environment. Also, small-angle neutron scattering (SANS) in fully deuterated oriented systems is powerful for gaining information on protonated host molecules in a lipid environment by using the contrast proton/deuterium method. Here we report on a very simple system made of fatty acids (dodecanoic and tetradecanoic) and ethanolamine in water. All components of this system can be obtained commercially as perdeuterated. Depending on the molar ratio and the concentration, the system self-assembles at room temperature into a direct hexagonal phase that is oriented by moderate magnetic fields of a few tesla. The orientation occurs within the magnetic field upon cooling the system from its higher-temperature isotropic phase: the lipid cylinders of the hexagonal phase become oriented parallel to the field. This is shown by solid-state NMR using either perdeuterated fatty acids or ethanolamine. This system bears strong interest for studying host protonated molecules but also in materials chemistry for building oriented solid materials.


Asunto(s)
Ácidos Grasos/química , Espectroscopía de Resonancia Magnética/métodos , Etanolamina/química
9.
Langmuir ; 30(19): 5518-26, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24787144

RESUMEN

Sensory properties of red wine tannins are bound to complex interactions between saliva proteins, membranes taste receptors of the oral cavity, and lipids or proteins from the human diet. Whereas astringency has been widely studied in terms of tannin-saliva protein colloidal complexes, little is known about interactions between tannins and lipids and their implications in the taste of wine. This study deals with tannin-lipid interactions, by mimicking both oral cavity membranes by micrometric size liposomes and lipid droplets in food by nanometric isotropic bicelles. Deuterium and phosphorus solid-state NMR demonstrated the membrane hydrophobic core disordering promoted by catechin (C), epicatechin (EC), and epigallocatechin gallate (EGCG), the latter appearing more efficient. C and EGCG destabilize isotropic bicelles and convert them into an inverted hexagonal phase. Tannins are shown to be located at the membrane interface and stabilize the lamellar phases. These newly found properties point out the importance of lipids in the complex interactions that happen in the mouth during organoleptic feeling when ingesting tannins.


Asunto(s)
Liposomas/química , Taninos/química , Gusto/fisiología , Vino/análisis , Catequina/análogos & derivados , Catequina/química , Humanos , Espectroscopía de Resonancia Magnética
10.
Mar Pollut Bull ; 199: 116012, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38232651

RESUMEN

Plastic pollution in the aquatic environment has been assessed for many years by ocean waste collection expeditions around the globe or by river sampling. While the total amount of plastic produced worldwide is well documented, the amount of plastic found in the ocean, the distribution of particles on its surface and its evolution over time are still the subject of much debate. In this article, we propose a general fragmentation model, postulating the existence of a critical size below which particle fragmentation becomes extremely unlikely. In the frame of this model, an abundance peak appears for sizes around 1 mm, in agreement with real environmental data. Using, in addition, a realistic exponential waste feed to the ocean, we discuss the relative impact of fragmentation and feed rates, and the temporal evolution of microplastics (MP) distribution. New conclusions on the temporal trend of MP pollution are drawn.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Océanos y Mares
11.
Langmuir ; 29(18): 5547-55, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23565776

RESUMEN

Hybrid amphiphiles composed of a lipid covalently linked to biomolecules are attracting considerable attention, owing to their unique physicochemical and biological properties. Herein, we have synthesized novel amino acid-nucleotide-lipids (ANLs), presenting phenylalanine and thymidine residues and saturated or unsaturated diacyl glycerol lipid moieties to investigate the effect of the specific aminoacid moieties on both aggregation properties and interactions of ANLs with single strand polyA RNA. Physicochemical studies (DLS, cryo-TEM, and small angle X-ray scattering) indicate that phenylanaline amino acids inserted at the 5' position of the nucleotide-lipids stabilize multilamellar systems, whereas unilamellar vesicles are formed preferentially in the case of nucleotide-lipids (NLs). Both NLs and ANLs exhibit weak interactions with complementary polyA RNA as revealed by isothermal titration calorimetry investigations. The multilamellar vesicles obtained with ANLs could be used as a versatile carrier, suitable for both hydrophobic and hydrophilic therapeutic molecules.


Asunto(s)
Aminoácidos/química , Lípidos/química , Nucleótidos/química , Aminoácidos/síntesis química , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie
12.
Langmuir ; 29(45): 13717-22, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24215580

RESUMEN

We investigate the behavior of multilamellar phases composed of lecithin and a commercial cosurfactant (Simusol), which is a mixture of ethoxylated fatty acids. Using X-ray scattering and a new procedure to fit the data, relevant parameters characterizing the lamellar structure were determined as a function of membrane composition, varying from 100% of lecithin to 100% of Simulsol. Scattering data illustrating the swelling of the lamellae for different amounts of cosurfactant are presented with the respective behavior of the Caillé parameter. With this experimental approach, we show that the incorporation of ethoxy brushes onto the lipid surface enhances repulsive interactions arising from membrane fluctuations and changes the interactions at the interface between bilayers.


Asunto(s)
Lecitinas/química , Membrana Dobles de Lípidos/química , Tensoactivos/química , Membrana Celular/química
13.
J Colloid Interface Sci ; 634: 300-313, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36535166

RESUMEN

HYPOTHESIS: Lipophilic cannabidiol can be solubilized in oil-in water nanoemulsions, which can then be impregnated into chitosan hydrogels forming another colloidal system that will facilitate cannabidiol's release. The delivery from both systems was compared, alongside structural and biological studies, to clarify the effect of the two carriers' structure on the release and toxicity of the systems. EXPERIMENTS: Oil-in-water nanoemulsions (NEs) and the respective nanoemulsion-filled chitosan hydrogels (NE/HGs) were formulated as carriers of cannabidiol (CBD). Size, polydispersity and stability of the NEs were evaluated and then membrane dynamics, shape and structure of both systems were investigated with EPR spin probing, SAXS and microscopy. Biocompatibility of the colloidal delivery systems was evaluated through cytotoxicity tests over normal human skin fibroblasts. An ex vivo permeation protocol using porcine ear skin was implemented to assess the release of CBD and its penetration through the skin. FINDINGS: Incorporation of the NEs in chitosan hydrogels does not significantly affect their structural properties as evidenced through SAXS, EPR and confocal microscopy. These findings indicate the successful development of a novel nanocarrier that preserves the NE structure with the CBD remaining encapsulated in the oil core while providing new rheological properties advantageous over NEs. Moreover, NE/HGs proved to be more efficient as a carrier for the release of CBD. Cell viability assessment revealed high biocompatibility of the proposed colloids.


Asunto(s)
Cannabidiol , Quitosano , Humanos , Animales , Porcinos , Hidrogeles/química , Dispersión del Ángulo Pequeño , Emulsiones/química , Difracción de Rayos X , Agua/química
14.
Langmuir ; 28(1): 272-82, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22118375

RESUMEN

We study the phase behavior in water of a mixture of natural long chain fatty acids (FAM) in association with ethylenediamine (EDA) and report a rich polymorphism depending on the composition. At a fixed EDA/FAM molar ratio, we observe upon dilution a succession of organized phases going from a lamellar phase to a hexagonal phase and, finally, to cylindrical micelles. The phase structure is established using polarizing microscopy, SAXS, and SANS. Interestingly, in the lamellar phase domain, we observe the presence of defects upon dilution, which SAXS shows to correspond to intrabilayer correlations. NMR and FF-TEM techniques suggest that these defects are related to an increase in the spontaneous curvature of the molecule monolayers in the lamellae. ATR-FTIR spectroscopy was also used to investigate the degree of ionization within these assemblies. The successive morphological transitions are discussed with regards to possible molecular mechanisms, in which the interaction between the acid surfactant and the amine counterion plays the leading role.


Asunto(s)
Ácidos Grasos/química , Cristalización , Técnica de Fractura por Congelación , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Transmisión , Dispersión de Radiación
15.
J Mater Chem B ; 10(14): 2680-2690, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35079759

RESUMEN

In the present study a biocompatible oil-in-water (O/W) microemulsion was developed carrying short-wave infrared (SWIR) π-conjugated polymers and possessing photoacoustic properties for the first time. SWIR and NIR absorbing conjugated polymers were accomplished to be dissolved in a Food & Drug Administration (FDA) approved natural oil limonene, to formulate an O/W microemulsion using biocompatible surfactants (Span80, Labrasol®). Detailed structural characterization in the absence and presence of the polymers was performed by means of dynamic light scattering (DLS), small-angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) spectroscopy. In terms of biological evaluation of the loaded microemulsions, inhibition of cell proliferation in various cancer cell lines without exhibiting significant cytotoxicity was tested through the MTT assay. The developed π-conjugated polymers hosted in O/W microemulsions represent a technological approach with a wide range of biomedical and bioelectronic applications and in this contribution, their photoacoustic properties are presented as a proof-of-concept.


Asunto(s)
Medios de Contraste , Polímeros , Espectroscopía de Resonancia por Spin del Electrón , Emulsiones/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
16.
Gels ; 8(9)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36135307

RESUMEN

The present work reports on the structural study of a film made of a hybrid blend of biopolymers used as an enzyme carrier. A cellulose derivative (HPMC) and chitosan (CS) were combined in order to formulate a film on which Mucor miehei lipase was immobilized. The film was successfully used as a biocatalyst; however, little is known about the structure of the system. Therefore, small-angle X-ray scattering, Fourier transform infrared spectroscopy (FTIR), optical microscopy, and scanning electron microscopy (SEM), as well as microindentation measurements, were used to shed light on the structure of the promising biocatalyst. Among the results, intermolecular hydrogen bonds were observed between the amide groups of the two polymers and the lipase. The presence of the enzyme does not seem to affect the mechanical properties of the matrix. The used film after 35 cycles of reaction seemed to be fatigued and had lost part of its humidity, explaining the reduction of the enzyme activity.

17.
J Colloid Interface Sci ; 617: 257-266, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35278863

RESUMEN

All-aqueous microdroplets produced by liquid-liquid phase separation have emerged as promising models of artificial cells, and offer new approaches for the solvent-free encapsulation of fragile solutes. Yet, the lack of a membrane on such droplets makes them intrinsically unstable against coarsening, and precludes a fine control over chemical localization, as solutes can freely diffuse through the interface. Herein, we report the construction of stable and impermeable water-in-water emulsions via the interfacial self-assembly of mixed sodium oleate/1-decanol bilayers on dextran-rich droplets produced by segregative liquid-liquid phase separation with poly(ethylene glycol). Lipids spontaneously self-assemble as multilamellar structures at the surface of the droplets as revealed by freeze-fracture transmission electron microscopy and small-angle X-ray scattering. We further demonstrate that the lipid-based membrane is impermeable to oligonucleotides and proteins, but also to a low molecular weight dye, so that a strict chemical encapsulation can be achieved by spontaneous partitioning within the droplets before membrane self-assembly. Taken together, our results highlight the ease of production of fatty acid-stabilized all-aqueous emulsions droplets able to encapsulate a range of solutes without the need of oil or organic solvents, paving the way to the construction of robust membrane-bounded, polymer-rich artificial cells.


Asunto(s)
Ácidos Grasos , Agua , Emulsiones/química , Polietilenglicoles/química , Solventes , Agua/química
18.
ACS Appl Mater Interfaces ; 14(11): 13305-13316, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35258941

RESUMEN

Alkylation of aromatic hydrocarbons is among the most industrially important reactions, employing acid catalysts such as AlCl3, H2SO4, HF, or H3PO4. However, these catalysts present severe drawbacks, such as low selectivity and high corrosiveness. Taking advantage of the intrinsic high acid strength and Lewis and Brønsted acidity of niobium oxide, we have designed the first series of Nb2O5-SiO2(HIPE) monolithic catalysts bearing multiscale porosity through the integration of a sol-gel process and the physical chemistry of complex fluids. The MUB-105 series offers efficient solvent-free heterogeneous catalysis toward Friedel-Crafts monoalkylation and -acylation reactions, where 100% conversion has been reached at 140 °C while cycling. Alkylation reactions employing the MUB-105(1) catalyst have a maximum turnover number (TON) of 104 and a turnover frequency (TOF) of 9 h-1, whereas for acylation, MUB-105(1) and MUB-105(2) yield maximum TON and TOF values of 107 and 11 h-1, respectively. Moreover, the catalysts are selective, producing equal amounts of ortho- and para-substituted alkylated products and greater than 90% of the para-substituted acylated product. The highest catalytic efficiencies are obtained for the MUB-105(1) catalyst, bearing the smallest Nb2O5 particle sizes, lowest Nb2O5 content, and the highest amorphous character. The catalysts presented here are in a monolithic self-standing state, offering easy handling, reusability, and separation from the final products.

19.
Langmuir ; 27(15): 9122-30, 2011 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-21662979

RESUMEN

Nanometric bilayer-based self-assembled micelles commonly named as bicelles, formed with a mixture of long and short chains phosphatidylcholine lipids (PC), are known to orient spontaneously in a magnetic field. This field-induced orientational order strongly depends on the molecular structure of the phospholipids. Using small-angle X-ray scattering (SAXS), we performed detailed structural studies of bicelles and investigated the orientation/relaxation kinetics in three different systems: saturated-chain lipid bicelles made of DMPC (dimyristoyl PC)/DCPC (1,2-dicaproyl PC) with and without the added paramagnetic lanthanide ions Eu(3+), as well as bicelles of TBBPC (1-tetradecanoyl-2-(4-(4-biphenyl)butanoyl)-sn-glycero-3-PC)/DCPC. The structural study confirmed the previous NMR studies, which showed that DMPC bicelles orient with the membrane normal perpendicular (defined here as "nematic" orientation) to the magnetic field, whereas they orient parallel (defined here as "smectic" orientation) to the magnetic field in the presence of Eu(3+). The TBBPC bicelles also show smectic orientation. Surprisingly, the orientational order induced in the magnetic field remains even after the magnetic field is removed, which allowed us to investigate the orientation and relaxation kinetics of different bicelle structures. We demonstrate that this kinetics is very different for all three types of bicelles at the same lipid concentration; DMPC bicelles (~40 nm diameter) with and without Eu(3+) orient faster than TBBPC bicelles (~80 nm diameter). However, for the relaxation, DMPC bicelles (nematic) lose their macroscopic orientation only after one hour, whereas both DMPC bicelles with Eu(3+) and TBBPC bicelles (smectic) remarkably stay oriented for up to several days! These results indicate that the orientation mechanism of these nanometric disks in the magnetic field is governed by their size, with smaller bicelles orienting faster than the larger bicelles. Their relaxation mechanism outside the magnetic field, however, is governed by the degree of ordering. Indeed, the angular distribution of oriented bicelles is much narrower for the bicelles with smectic orientation, and, consequently, they keep aligned for much longer time (days) than those with nematic ordering (hours) outside the magnetic field. The understanding of the orientation/relaxation kinetics, as well as the morphologies of these "molecular goniometers" at molecular and supramolecular levels, allows controlling such an unprecedented long-range and long-lived smectic ordering of nanodisks and opens a wide field of applications for structural biology or material sciences.


Asunto(s)
Modelos Químicos , Fosfolípidos/química , Europio/química , Cinética , Espectroscopía de Resonancia Magnética , Magnetismo , Micelas , Estructura Molecular , Dispersión del Ángulo Pequeño , Difracción de Rayos X
20.
Langmuir ; 27(8): 4505-13, 2011 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-21405069

RESUMEN

Unsaturated fatty acids may be extracted from various agricultural resources and are widely used as soaps in the industry. However, there also exist a large variety of saturated and hydroxy fatty acids in nature, but their metal salts crystallize at room temperature in water, hampering their use in biological and chemical studies or for industrial applications. Addition of guanidine hydrochloride (GuHCl) to sodium salt of myristic acid has been shown to prevent its crystallization in water, forming stable flat bilayers at room temperature. Herein, we extend this finding to two other saturated fatty acids (palmitic and stearic acids) and two hydroxyl fatty acids (juniperic and 12 hydroxy stearic acids) and study more deeply (by using small angle neutron scattering) the supramolecular assemblies formed in both saturated and hydroxyl fatty acid systems. In addition, we take the advantage that crystallization no longer occurs at room temperature in the presence of GuHCl to study the foaming and emulsifying properties of those fatty acid dispersions. Briefly, our results show that all fatty acids, even juniperic acid, which is a bola lipid, are arranged in a bilayer structure that may be interdigitated. Depending on the nature of the fatty acid, the systems exhibit good foamability and foam stability (except for juniperic acid), and emulsion stability was good. Those findings should be of interest for using saturated long chain (and hydroxyl) fatty acids as surfactants for detergency or even materials chemistry.


Asunto(s)
Emulsiones/química , Ácidos Grasos/química , Guanidina/química , Membrana Dobles de Lípidos/química , Ácido Mirístico/química , Ácido Palmítico/química , Ácidos Esteáricos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA