Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 24(35): 20980-20987, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36000294

RESUMEN

It is widely recognized that the intrinsic dipole in two-dimensional (2D) photocatalysts promotes hydrogen production during water splitting. Herein, we wonder whether the intrinsic dipole plays a negative role in water splitting. In this work, we make a comparative study of the structural, electronic, and photocatalytic properties of Janus B2XY (X, Y = S, Se, Te) and F-BNBN-H monolayers using first principles. Our theoretical results reveal that both B2XY and F-BNBN-H monolayers exhibit spatially separated conduction band minimum (CBM) and valence band maximum (VBM), as well as vacuum level differences at the opposite surfaces due to the intrinsic dipole. The F-BNBN-H monolayer has excellent redox ability for water splitting, because its CBM is located at the surface with a lower vacuum level and its VBM is distributed on the opposite surface possessing a higher vacuum level. By sharp contrast, B2XY monolayers have limited or vanishing redox ability, because their CBM is located at the surface with a higher vacuum level and their VBM is distributed on the opposite surface with a lower vacuum level. This work emphasizes the negative role of vacuum level differences of photocatalysts caused by the intrinsic dipole in water splitting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA