Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Expert Opin Ther Targets ; 28(1-2): 9-15, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38156441

RESUMEN

INTRODUCTION: Mitochondrial LonP1 is an ATP-powered protease that also functions as an ATP-dependent chaperone. LonP1 plays a pivotal role in regulating mitochondrial proteostasis, metabolism and cell stress responses. Cancer cells exploit the functions of LonP1 to combat oncogenic stressors such as hypoxia, proteotoxicity, and oxidative stress, and to reprogram energy metabolism enabling cancer cell proliferation, chemoresistance, and metastasis. AREAS COVERED: LonP1 has emerged as a potential target for anti-cancer therapeutics. We review how cytoprotective functions of LonP1 can be leveraged by cancer cells to support oncogenic growth, proliferation, and survival. We also offer insights into small molecule inhibitors that target LonP1 by two distinct mechanisms: competitive inhibition of its protease activity and allosteric inhibition of its ATPase activity, both of which are crucial for its protease and chaperone functions. EXPERT OPINION: We highlight advantages of identifying specific, high-affinity allosteric inhibitors blocking the ATPase activity of LonP1. The future discovery of such inhibitors has potential application either alone or in conjunction with other anticancer agents, presenting an innovative approach and target for cancer therapeutics.


Asunto(s)
Metabolismo Energético , Péptido Hidrolasas , Humanos , Proliferación Celular , Adenosina Trifosfatasas , Adenosina Trifosfato
2.
Orphanet J Rare Dis ; 18(1): 72, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024986

RESUMEN

BACKGROUND: Biallelic mutations in CYP27A1 and CYP7B1, two critical genes regulating cholesterol and bile acid metabolism, cause cerebrotendinous xanthomatosis (CTX) and hereditary spastic paraplegia type 5 (SPG5), respectively. These rare diseases are characterized by progressive degeneration of corticospinal motor neuron axons, yet the underlying pathogenic mechanisms and strategies to mitigate axonal degeneration remain elusive. METHODS: To generate induced pluripotent stem cell (iPSC)-based models for CTX and SPG5, we reprogrammed patient skin fibroblasts into iPSCs by transducing fibroblast cells with episomal vectors containing pluripotency factors. These patient-specific iPSCs, as well as control iPSCs, were differentiated into cortical projection neurons (PNs) and examined for biochemical alterations and disease-related phenotypes. RESULTS: CTX and SPG5 patient iPSC-derived cortical PNs recapitulated several disease-specific biochemical changes and axonal defects of both diseases. Notably, the bile acid chenodeoxycholic acid (CDCA) effectively mitigated the biochemical alterations and rescued axonal degeneration in patient iPSC-derived neurons. To further examine underlying disease mechanisms, we developed CYP7B1 knockout human embryonic stem cell (hESC) lines using CRISPR-cas9-mediated gene editing and, following differentiation, examined hESC-derived cortical PNs. Knockout of CYP7B1 resulted in similar axonal vesiculation and degeneration in human cortical PN axons, confirming a cause-effect relationship between gene deficiency and axonal degeneration. Interestingly, CYP7B1 deficiency led to impaired neurofilament expression and organization as well as axonal degeneration, which could be rescued with CDCA, establishing a new disease mechanism and therapeutic target to mitigate axonal degeneration. CONCLUSIONS: Our data demonstrate disease-specific lipid disturbances and axonopathy mechanisms in human pluripotent stem cell-based neuronal models of CTX and SPG5 and identify CDCA, an established treatment of CTX, as a potential pharmacotherapy for SPG5. We propose this novel treatment strategy to rescue axonal degeneration in SPG5, a currently incurable condition.


Asunto(s)
Células Madre Pluripotentes Inducidas , Paraplejía Espástica Hereditaria , Xantomatosis Cerebrotendinosa , Humanos , Ácido Quenodesoxicólico/farmacología , Ácido Quenodesoxicólico/uso terapéutico , Ácido Quenodesoxicólico/metabolismo , Xantomatosis Cerebrotendinosa/genética , Neuronas/metabolismo , Neuronas/patología , Paraplejía Espástica Hereditaria/metabolismo , Ácidos y Sales Biliares , Paraplejía/metabolismo
3.
Methods Mol Biol ; 2429: 143-174, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35507160

RESUMEN

A major obstacle in studying human central nervous system (CNS) diseases is inaccessibility to the affected tissue and cells. Even in limited cases where tissue is available through surgical interventions, differentiated neurons cannot be maintained for extended time frames, which is prohibitive for experimental repetition and scalability. Advances in methodologies for reprogramming human somatic cells into induced pluripotent stem cells (iPSC) and directed differentiation of human neurons in culture now allow access to physiological and disease relevant cell types. In particular, patient iPSC-derived neurons represent unique ex vivo neuronal networks that allow investigating disease genetic and molecular pathways in physiologically accurate cellular microenvironments, importantly recapitulating molecular and cellular phenotypic aspects of disease. Generation of functional neural cells from iPSCs relies on manipulation of culture formats in the presence of specific factors that promote the conversion of pluripotent stem cells into neurons. To this end, several experimental protocols have been developed. Direct differentiation of stem cells into post-mitotic neurons is usually associated with low throughput, low yield, and high technical variability. Instead, methods relying on expansion of the intermediate neural progenitor cells (NPCs) show incredible potential for posterior generation of suitable neuronal cultures for cellular and biochemical assays, as well as drug screening. NPCs are expandable, self-renewable multipotent cells that can differentiate into astrocytes, oligodendrocytes, and electrically active neurons. Here, we describe a protocol for generating iPSC-derived NPCs via formation of neural aggregates and selection of NPC precursor neural rosettes, followed by a simple and reproducible method for generating a mixed population of cortical-like neurons through growth factor withdrawal. Implementation of this protocol has the potential to advance the goals of precision medicine research for both neurological and psychiatric disorders.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Diferenciación Celular/fisiología , Humanos , Neuronas/metabolismo , Medicina de Precisión
4.
Front Cell Neurosci ; 16: 801179, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35317195

RESUMEN

Accumulation of misfolded, aggregating proteins concurrent with disease onset and progression is a hallmark of neurodegenerative proteinopathies. An important class of these are tauopathies, such as frontotemporal dementia (FTD) and Alzheimer's disease (AD), associated with accumulation of aberrant forms of tau protein in the brain. Pathological tau undergoes abnormal post-translational modifications, misfolding, oligomerization and changes in solubility, cellular redistribution, and spreading. Development and testing of experimental therapeutics that target these pathological tau conformers requires use of cellular models that recapitulate neuronal endogenous, non-heterologous tau expression under genomic and physiological contexts relevant to disease. In this study, we employed FTD-patient induced pluripotent stem cells (iPSC)-derived neurons, expressing a tau variant or mutation, as primary models for driving a medicinal chemistry campaign around tau targeting degrader series. Our screening goal was to establish structure-activity relationships (SAR) for the different chemical series to identify the molecular composition that most efficiently led to tau degradation in human FTD ex vivo neurons. We describe the identification of the lead compound QC-01-175 and follow-up optimization strategies for this molecule. We present three final lead molecules with tau degradation activity in mutant neurons, which establishes potential disease relevance and will drive future studies on specificity and pharmacological properties.

5.
Nat Commun ; 11(1): 3258, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591533

RESUMEN

Tauopathies are neurodegenerative diseases associated with accumulation of abnormal tau protein in the brain. Patient iPSC-derived neuronal cell models replicate disease-relevant phenotypes ex vivo that can be pharmacologically targeted for drug discovery. Here, we explored autophagy as a mechanism to reduce tau burden in human neurons and, from a small-molecule screen, identify the mTOR inhibitors OSI-027, AZD2014 and AZD8055. These compounds are more potent than rapamycin, and robustly downregulate phosphorylated and insoluble tau, consequently reducing tau-mediated neuronal stress vulnerability. MTORC1 inhibition and autophagy activity are directly linked to tau clearance. Notably, single-dose treatment followed by washout leads to a prolonged reduction of tau levels and toxicity for 12 days, which is mirrored by a sustained effect on mTORC1 inhibition and autophagy. This new insight into the pharmacodynamics of mTOR inhibitors in regulation of neuronal autophagy may contribute to development of therapies for tauopathies.


Asunto(s)
Autofagia , Neuronas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Estrés Fisiológico , Tauopatías/metabolismo , Proteínas tau/metabolismo , Animales , Autofagia/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Persona de Mediana Edad , Modelos Biológicos , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neuronas/efectos de los fármacos , Fagosomas/efectos de los fármacos , Fagosomas/metabolismo , Fenotipo , Ratas Wistar , Estrés Fisiológico/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Tauopatías/patología , Factores de Tiempo
6.
Elife ; 82019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30907729

RESUMEN

Tauopathies are neurodegenerative diseases characterized by aberrant forms of tau protein accumulation leading to neuronal death in focal brain areas. Positron emission tomography (PET) tracers that bind to pathological tau are used in diagnosis, but there are no current therapies to eliminate these tau species. We employed targeted protein degradation technology to convert a tau PET-probe into a functional degrader of pathogenic tau. The hetero-bifunctional molecule QC-01-175 was designed to engage both tau and Cereblon (CRBN), a substrate-receptor for the E3-ubiquitin ligase CRL4CRBN, to trigger tau ubiquitination and proteasomal degradation. QC-01-175 effected clearance of tau in frontotemporal dementia (FTD) patient-derived neuronal cell models, with minimal effect on tau from neurons of healthy controls, indicating specificity for disease-relevant forms. QC-01-175 also rescued stress vulnerability in FTD neurons, phenocopying CRISPR-mediated MAPT-knockout. This work demonstrates that aberrant tau in FTD patient-derived neurons is amenable to targeted degradation, representing an important advance for therapeutics.


Asunto(s)
Demencia Frontotemporal/tratamiento farmacológico , Neuronas/metabolismo , Fármacos Neuroprotectores/metabolismo , Proteolisis , Tauopatías/tratamiento farmacológico , Proteínas tau/metabolismo , Línea Celular , Humanos , Modelos Teóricos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA