Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
PLOS Glob Public Health ; 3(2): e0001455, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36963002

RESUMEN

The COVID-19 pandemic highlighted the importance of global genomic surveillance to monitor the emergence and spread of SARS-CoV-2 variants and inform public health decision-making. Until December 2020 there was minimal capacity for viral genomic surveillance in most Caribbean countries. To overcome this constraint, the COVID-19: Infectious disease Molecular epidemiology for PAthogen Control & Tracking (COVID-19 IMPACT) project was implemented to establish rapid SARS-CoV-2 whole genome nanopore sequencing at The University of the West Indies (UWI) in Trinidad and Tobago (T&T) and provide needed SARS-CoV-2 sequencing services for T&T and other Caribbean Public Health Agency Member States (CMS). Using the Oxford Nanopore Technologies MinION sequencing platform and ARTIC network sequencing protocols and bioinformatics pipeline, a total of 3610 SARS-CoV-2 positive RNA samples, received from 17 CMS, were sequenced in-situ during the period December 5th 2020 to December 31st 2021. Ninety-one Pango lineages, including those of five variants of concern (VOC), were identified. Genetic analysis revealed at least 260 introductions to the CMS from other global regions. For each of the 17 CMS, the percentage of reported COVID-19 cases sequenced by the COVID-19 IMPACT laboratory ranged from 0·02% to 3·80% (median = 1·12%). Sequences submitted to GISAID by our study represented 73·3% of all SARS-CoV-2 sequences from the 17 CMS available on the database up to December 31st 2021. Increased staffing, process and infrastructural improvement over the course of the project helped reduce turnaround times for reporting to originating institutions and sequence uploads to GISAID. Insights from our genomic surveillance network in the Caribbean region directly influenced non-pharmaceutical countermeasures in the CMS countries. However, limited availability of associated surveillance and clinical data made it challenging to contextualise the observed SARS-CoV-2 diversity and evolution, highlighting the need for development of infrastructure for collecting and integrating genomic sequencing data and sample-associated metadata.

3.
Sci Rep ; 12(1): 4047, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260697

RESUMEN

The use of lure-and-kill, large-volume ovitraps to control Aedes aegypti and Aedes albopictus populations has shown promise across multiple designs that target gravid females (adulticidal) or larvae post-oviposition (larvicidal). Here we report on a pilot trial to deploy 10 L yeast-baited ovitraps at select sites in Curepe, Trinidad, West Indies during July to December, 2019. Oviposition rates among ovitraps placed in three Treatment sites were compared to a limited number of traps placed in three Control areas (no Aedes management performed), and three Vector areas (subjected to standard Ministry of Health, Insect Vector Control efforts). Our goal was to gain baseline information on efforts to saturate the Treatment sites with ovitraps within 20-25 m of each other and compare oviposition rates at these sites with background oviposition rates in Control and Vector Areas. Although yeast-baited ovitraps were highly attractive to gravid Aedes females, a primary limitation encountered within the Treatment sites was the inability to gain access to residential compounds for trap placement, primarily due to residents being absent during the day. This severely limited our intent to saturate these areas with ovitraps, indicating that future studies must include plans to account for these inaccessible zones during trap placement.


Asunto(s)
Aedes , Animales , Femenino , Control de Mosquitos , Mosquitos Vectores , Oviposición , Saccharomyces cerevisiae , Trinidad y Tobago
4.
Acta Trop ; 199: 105108, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31351893

RESUMEN

The Mayaro virus disease (MAYVD) is an emerging mosquito borne zoonosis that was first reported on the island of Trinidad in 1954. The viral agent for this disease is known to presently be endemic to Central and South America. The enzootic cycle of the Mayaro virus (MAYV) is not fully characterized, though primates are thought to be the main reservoir with Haemagogus species of mosquitoes as the primary vector. This virus has been responsible for several sporadic cases of infections and limited outbreaks, but it is postulated that the MAYVD will become a major epidemic in the future, following in the steps of the recent pandemics caused by Chikungunya and Zika viruses. Mitigating possible major outbreaks of MAYVD in the future would require effective strategies for vector control, for which knowledge on the ecology and distribution of the Haemagogus mosquitoes would be vitally important. In Trinidad, Haemagogus species have only been reported in the northwestern peninsula of the island based on studies up to 1995. However, no recent investigations have been completed to determine the status of this important vector on the island. The aim of this study was to investigate the current spatial distribution of Haemagogus species in the island of Trinidad, West Indies. Adult Haemagogus (Hag.) mosquitoes and larvae were surveyed during a twenty-month period using human bait trapping and ovitraps in major forested areas on the island. Mosquito species were identified using classical taxonomic keys. Haemagogus species were widespread and found in all forest types surveyed. Hag. janthinomys (85.7%) was the most widely distributed and dominant species on the island. Lower levels of Hag. leucocelaneus (7.3%), Hag. equinus (6.4%) and Hag. celeste (0.6%) were also collected. Overall, the proportion of mosquitoes collected in the wet season (June-December) was 3.5 times more than in the dry season (January-May). Mangroves, young secondary forests, semi-evergreen and evergreen forest types had relatively high mean abundance levels of Haemagogus species as compared to deciduous and montane forests. Proximity analysis suggests that population settlements within a 1 km buffer of the forest peripherals may be at risk for any emerging arboviral disease associated with these mosquito vectors. Haemagogus species showed a much wider distribution in Trinidad as compared to previous reports from up to 20 years ago and were prevalent in areas with no known presence of non-human primates. Since the MAYV has been previously implicated in causing infections in vertebrate hosts like rodents, birds and small mammals, the findings of this study suggest that there may be alternative hosts and reservoirs of this virus in the sylvatic cycle in Trinidad, other than primates. This has significant epidemiological implications for mosquito-borne viral infections in the region.


Asunto(s)
Infecciones por Alphavirus/transmisión , Culicidae , Mosquitos Vectores , Animales , Culicidae/virología , Demografía , Humanos , Trinidad y Tobago
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA