RESUMEN
The aim of this 2-year study was to evaluate the influence of bed depth (40 and 60 cm) on the development of tropical ornamental species (Alpinia purpurata, Heliconia latispatha and Strelitzia reginae) and on the removal of different contaminants such as chemical oxygen demand (COD), nitrate (N-NO3), ammonium (N-NH4), total nitrogen (TN), total phosphorus (TP), total suspended solids (TSS), total coliforms (TCs) and fecal coliforms (FCs), in horizontal subsurface flow constructed wetlands (HSSF-CWs) for municipal wastewater treatment. The results showed that the depth of 60 cm favored the removal of COD, with removal efficiencies of 94% for the three plant species. The depth of 40 cm was most effective for the removal of N-NH4 (80-90%). Regarding the removal of TN, the removals were similar for the different plants and depths (72-86%). The systems only achieved up to 60% removal of TCs and FCs. The depth of the CWs substrate and its saturation level influenced the development of ornamental vegetation, particularly flower production. For Heliconia latispatha, a bed depth level of 60 cm was more suitable, while for Alpinia purpurata 40 cm was better, and for Strelitzia reginae in both cases there was no flower production. The impact of bed depth on contaminant removal depends on the specific type of contaminant.
RESUMEN
The appearance of SARS-CoV-2 represented a new health threat to humanity and affected millions of people; the transmission of this virus occurs through different routes, and one of them recently under debate in the international community is its possible incorporation and spread by sewage. Therefore, the present work's research objectives are to review the presence of SARS-CoV-2 in wastewater throughout the world and to analyze the coverage of wastewater treatment in Mexico to determine if there is a correlation between the positive cases of COVID-19 and the percentages of treated wastewater in Mexico as well as to investigate the evidence of possible transmission by aerosol sand untreated wastewater. Methodologically, a quick search of scientific literature was performed to identify evidence the presence of SARS-CoV-2 RNA (ribonucleic acid) in wastewater in four international databases. The statistical information of the positive cases of COVID-19 was obtained from data from the Health Secretary of the Mexican Government and the Johns Hopkins Coronavirus Resource Center. The information from the wastewater treatment plants in Mexico was obtained from official information of the National Water Commission of Mexico. The results showed sufficient evidence that SARS-CoV-2 remains alive in municipal wastewater in Mexico. Our analysis indicates that there is a low but significant correlation between the percentage of treated water and positive cases of coronavirus r = -0.385, with IC (95%) = (-0.647, -0.042) and p = 0.030; this result should be taken with caution because wastewater is not a transmission mechanism, but this finding is useful to highlight the need to increase the percentage of treated wastewater and to do it efficiently. In conclusions, the virus is present in untreated wastewater, and the early detection of SAR-CoV-2 could serve as a bioindicator method of the presence of the virus. This could be of great help to establish surveillance measures by zones to take preventive actions, which to date have not been considered by the Mexican health authorities. Unfortunately, wastewater treatment systems in Mexico are very fragile, and coverage is limited to urban areas and non-existent in rural areas. Furthermore, although the probability of contagion is relatively low, it can be a risk for wastewater treatment plant workers and people who are close to them.
Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Humanos , México/epidemiología , ARN Viral , Aguas Residuales , AguaRESUMEN
Vertical partially saturated (VPS) constructed wetlands (CWs) are a novel wastewater treatment system for which little information is known about its design parameters and performance under tropical climates. The objective of this study is to evaluate the nitrogen removal process from domestic wastewater and the production of tropical ornamental plants (Canna hybrids and Zantedeschia aethiopica) in VPS CWs at a mesocosms scale. Nine VPS CWs, with a free-flow zone of 16 cm and a saturated zone of 16 cm, were used as experimental units. Three units were planted with Canna hybrids., and three, with Zantedeschia aethiopica (one plant per unit); the remaining three units were established as controls without vegetation. They were fed with domestic wastewater intermittently and evaluated for the elimination of COD, N-NH4, N-NO3, Norg, NT, and PT. The results showed an increase in the removal for some pollutants in the vegetated systems, i.e., N-NH4 (35%), Norg (16%), TN (25%), and TP (47%) in comparison to the unvegetated systems. While N-NO3 removal showed better removal in 10% of the systems without vegetation, no significant differences were found (p > 0.05) for COD removal. The aerobic and anaerobic conditions in the VPS CWs favor the elimination of pollutants in the systems, and also the development of the tropical species evaluated in this study; good development was exhibited by a high growth rate and biomass production.