Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sensors (Basel) ; 22(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35161454

RESUMEN

In this paper we present the development of photonic integrated circuit (PIC) biosensors for the label-free detection of six emerging and endemic swine viruses, namely: African Swine Fever Virus (ASFV), Classical Swine Fever Virus (CSFV), Porcine Reproductive and Respiratory Syndrome Virus (PPRSV), Porcine Parvovirus (PPV), Porcine Circovirus 2 (PCV2), and Swine Influenza Virus A (SIV). The optical biosensors are based on evanescent wave technology and, in particular, on Resonant Rings (RRs) fabricated in silicon nitride. The novel biosensors were packaged in an integrated sensing cartridge that included a microfluidic channel for buffer/sample delivery and an optical fiber array for the optical operation of the PICs. Antibodies were used as molecular recognition elements (MREs) and were selected based on western blotting and ELISA experiments to ensure the high sensitivity and specificity of the novel sensors. MREs were immobilized on RR surfaces to capture viral antigens. Antibody-antigen interactions were transduced via the RRs to a measurable resonant shift. Cell culture supernatants for all of the targeted viruses were used to validate the biosensors. Resonant shift responses were dose-dependent. The results were obtained within the framework of the SWINOSTICS project, contributing to cover the need of the novel diagnostic tools to tackle swine viral diseases.


Asunto(s)
Virus de la Fiebre Porcina Africana , Técnicas Biosensibles , Circovirus , Enfermedades de los Porcinos , Virosis , Animales , Porcinos
2.
Sensors (Basel) ; 19(2)2019 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-30669504

RESUMEN

In this paper, we present the concept of a novel diagnostic device for on-site analyses, based on the use of advanced bio-sensing and photonics technologies to tackle emerging and endemic viruses causing swine epidemics and significant economic damage in farms. The device is currently under development in the framework of the EU Commission co-funded project. The overall concept behind the project is to develop a method for an early and fast on field detection of selected swine viruses by non-specialized personnel. The technology is able to detect pathogens in different types of biological samples, such as oral fluids, faeces, blood or nasal swabs. The device will allow for an immediate on-site threat assessment. In this work, we present the overall concept of the device, its architecture with the technical requirements, and all the used innovative technologies that contribute to the advancements of the current state of the art.


Asunto(s)
Equipo para Diagnóstico , Enfermedades de los Porcinos/diagnóstico , Porcinos/virología , Virosis/diagnóstico , Animales , Técnicas Biosensibles , Reproducibilidad de los Resultados
3.
Pathogens ; 13(5)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38787267

RESUMEN

Swine viral diseases have the capacity to cause significant losses and affect the sector's sustainability, a situation further exacerbated by the lack of antiviral drugs and the limited availability of effective vaccines. In this context, a novel point-of-care (POC) diagnostic device incorporating photonic integrated circuits (PICs), microfluidics and information, and communication technology into a single platform was developed for the field diagnosis of African swine fever (ASF) and classical swine fever (CSF). The device targets viral particles and has been validated using oral fluid and serum samples. Sensitivity, specificity, accuracy, precision, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were calculated to assess the performance of the device, and PCR was the reference method employed. Its sensitivities were 80.97% and 79%, specificities were 88.46% and 79.07%, and DOR values were 32.25 and 14.21 for ASF and CSF, respectively. The proposed POC device and PIC sensors can be employed for the pen-side detection of ASF and CSF, thus introducing novel technological advancements in the field of animal diagnostics. The need for proper validation studies of POC devices is highlighted to optimize animal biosecurity.

4.
Viruses ; 14(5)2022 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-35632730

RESUMEN

Swine viral diseases challenge the sector's sustainability by affecting productivity and the health and welfare of the animals. The lack of antiviral drugs and/or effective vaccines renders early and reliable diagnosis the basis of viral disease management, underlining the importance of point-of-care (POC) diagnostics. A novel POC diagnostic device utilizing photonic integrated circuits (PICs), microfluidics, and information and communication technologies for the detection of porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza A (SIV) was validated using spiked and clinical oral fluid samples. Metrics including sensitivity, specificity, accuracy, precision, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were calculated to assess the performance of the device. For PRRSV, the device achieved a sensitivity of 83.5%, specificity of 77.8%, and DOR values of 17.66, whereas the values for SIV were 81.8%, 82.2%, and 20.81, respectively. The POC device and PICs can be used for the detection of PRRSV and SIV in the field, paving the way for the introduction of novel technologies in the field of animal POC diagnostics to further optimize livestock biosecurity.


Asunto(s)
Virus de la Influenza A , Infecciones por Orthomyxoviridae , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Animales , Dispositivos Laboratorio en un Chip , Infecciones por Orthomyxoviridae/diagnóstico , Infecciones por Orthomyxoviridae/veterinaria , Sistemas de Atención de Punto , Porcinos
5.
Animals (Basel) ; 11(12)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34944160

RESUMEN

Soybean meal is the most important protein source in beef cattle feeding. The research of alternative protein sources to replace soy use, avoiding negative effects on in vivo performance and on the product's quality, is an important issue. In this context, cardoon represents a non-OGM resilient crop that can be cultivated in marginal lands for extracting its seed oil (utilized for biodiesel and biodegradable bioplastic production) and whose and the residual meal from its seed oil (utilized for biodiesel and biodegradable bioplastic production) could be a suitable by-product for animal feeding, due to its fairly high protein content. The aim of this study was to evaluate the feasibility of using cardoon meal as an innovative protein source during the Limousine bulls' fattening period. Thirty-two bulls were divided into two groups and fed with a diet containing soybean meal (SG) or partially replacing soybean meal with cardoon meal as a protein source (CG), respectively. The feeding trial lasted about 11 months. Growth performances and meat physical-chemical traits were evaluated. No statistical differences in feed efficiency, average daily gain, or in the main meat quality indicators, as well as in fatty acid profiles were found among the groups. Therefore, cardoon meal could be considered as an alternative to soybean meal in fattening Limousine bulls in order to enhance the sustainability of the farming system.

6.
J Vet Res ; 64(1): 15-23, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32258795

RESUMEN

INTRODUCTION: A research project is underway aiming to develop a field diagnostic tool for six important viruses of the pig sector, namely: African swine fever virus (ASFV), porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), porcine parvovirus (PPV), porcine circovirus (PCV2), and classical swine fever virus (CSFV). MATERIAL AND METHODS: To obtain a preliminary sounding of the interest in this type of instrument among its potential operators, a questionnaire was drawn up and submitted to three categories of stakeholders: farmers, veterinarians, and others (including scientific and technical staff working on animal farms). Four countries participated: Italy, Greece, Hungary, and Poland. RESULTS: In total, 83 replies were collected and analysed in a breakdown by stakeholder type and pertinence, where the areas were the importance of the main diseases within the different countries, diagnostic tool operational issues, and economic issues. CONCLUSION: The main end-users of this kind of instrument are expected to be private veterinarians and pig producers. The infectious agents seeming to be most interesting to diagnose with the instrument are PRRSV, SIV, PPV, and PCV2. The most decisive parameters which have been selected by the stakeholders are sensitivity, cost, simplicity, and time required to obtain results. The economic issue analysis showed that the majority of those who would prefer to buy rather than rent the device are willing to pay up to €3,000 for a diagnostic field tool.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA