Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39063017

RESUMEN

Non-enzyme-catalyzed thiol addition onto the α,ß-unsaturated carbonyl system is associated with several biological effects. Kinetics and diastereoselectivity of non-enzyme catalyzed nucleophilic addition of reduced glutathione (GSH) and N-acetylcysteine (NAC) to the six-membered cyclic chalcone analogs 2a and 2b were investigated at different pH values (pH 3.2, 7.4 and 8.0). The selected compounds displayed in vitro cancer cell cytotoxicity (IC50) of different orders of magnitude. The chalcones intrinsically reacted with both thiols under all incubation conditions. The initial rates and compositions of the final mixtures depended both on the substitution and the pH. The stereochemical outcome of the reactions was evaluated using high-pressure liquid chromatography with UV detection (HPLC-UV). The structures of the formed thiol-conjugates and the retro-Michael products (Z)-2a and (Z)-2b were confirmed by high-pressure liquid chromatography-mass spectrometry (HPLC-MS). Frontier molecular orbitals and the Fukui function calculations were carried out to investigate their effects on the six-membered cyclic analogs. Data were compared with those obtained with the open-chain (1) and the seven-membered (3) analogs. The observed reactivities do not directly relate to the difference in in vitro cancer cell cytotoxicity of the compounds.


Asunto(s)
Chalconas , Compuestos de Sulfhidrilo , Humanos , Chalconas/química , Chalconas/farmacología , Compuestos de Sulfhidrilo/química , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Cromatografía Líquida de Alta Presión , Glutatión/metabolismo , Glutatión/química , Cinética , Compuestos de Bencilideno/química
2.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239911

RESUMEN

Non-enzymatic thiol addition into the α,ß-unsaturated carbonyl system is associated with several biological effects. In vivo, the reactions can form small-molecule thiol (e.g., glutathione) or protein thiol adducts. The reaction of two synthetic (4'-methyl- and 4'-methoxy substituted) cyclic chalcone analogs with reduced glutathione (GSH) and N-acetylcysteine (NAC) was studied by (high-pressure liquid chromatography-ultraviolet spectroscopy) HPLC-UV method. The selected compounds displayed in vitro cancer cell cytotoxicity (IC50) of different orders of magnitude. The structure of the formed adducts was confirmed by (high-pressure liquid chromatography-mass spectrometry) HPLC-MS. The incubations were performed under three different pH conditions (pH 3.2/3.7, 6.3/6.8, and 8.0/7.4). The chalcones intrinsically reacted with both thiols under all incubation conditions. The initial rates and compositions of the final mixtures depended on the substitution and the pH. The frontier molecular orbitals and the Fukui function were carried out to investigate the effects on open-chain and seven-membered cyclic analogs. Furthermore, machine learning protocols were used to provide more insights into physicochemical properties and to support the different thiol-reactivity. HPLC analysis indicated diastereoselectivity of the reactions. The observed reactivities do not directly relate to the different in vitro cancer cell cytotoxicity of the compounds.


Asunto(s)
Antineoplásicos , Chalcona , Chalconas , Neoplasias , Chalcona/farmacología , Chalconas/farmacología , Glutatión/metabolismo , Acetilcisteína/química , Cromatografía Líquida de Alta Presión , Antineoplásicos/farmacología , Compuestos de Sulfhidrilo/química
3.
Molecules ; 27(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36432059

RESUMEN

Angiotensin-converting enzyme (ACE) inhibitors are one of the most active classes for cardiovascular diseases and hypertension treatment. In this regard, developing active and non-toxic ACE inhibitors is still a continuous challenge. Furthermore, the literature survey shows that oxidative stress plays a significant role in the development of hypertension. Herein, glutathione's molecular structure and supramolecular arrangements are evaluated as a potential ACE inhibitor. The tripeptide molecular modeling by density functional theory, the electronic structure by the frontier molecular orbitals, and the molecular electrostatic potential map to understand the biochemical processes inside the cell were analyzed. The supramolecular arrangements were studied by Hirshfeld surfaces, quantum theory of atoms in molecules, and natural bond orbital analyses. They showed distinct patterns of intermolecular interactions in each polymorph, as well as distinct stabilizations of these. Additionally, the molecular docking study presented the interactions between the active site residues of the ACE and glutathione via seven hydrogen bonds. The pharmacophore design indicated that the hydrogen bond acceptors are necessary for the interaction of this ligand with the binding site. The results provide useful information for the development of GSH analogs with higher ACE inhibitor activity.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Hipertensión , Humanos , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Simulación del Acoplamiento Molecular , Sitios de Unión , Glutatión
4.
Molecules ; 27(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35458577

RESUMEN

A novel 4(1H) quinolinone derivative (QBCP) was synthesized and characterized with single crystal X-ray diffraction. Hirshfeld surfaces (HS) analyses were employed as a complementary tool to evaluate the crystal intermolecular interactions. The molecular global reactivity parameters of QBCP were studied using HOMO and LUMO energies. In addition, the molecular electrostatic potential (MEP) and the UV-Vis absorption and emission spectra were obtained and analyzed. The supermolecule (SM) approach was employed to build a bulk with 474,552 atoms to simulate the crystalline environment polarization effect on the asymmetric unit of the compound. The nonlinear optical properties were investigated using the density functional method (DFT/CAM-B3LYP) with the Pople's 6-311++G(d,p) basis set. The quantum DFT results of the linear polarizability, the average second-order hyperpolarizability and the third-order nonlinear susceptibility values were computed and analyzed. The results showed that the organic compound (QBCP) has great potential for application as a third-order nonlinear optical material.


Asunto(s)
Teoría Cuántica , Cristalografía por Rayos X , Modelos Moleculares , Conformación Molecular , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática
5.
Phys Chem Chem Phys ; 23(10): 6128-6140, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33684185

RESUMEN

In this study, a combined experimental and theoretical study of the nonlinear optical properties (NLO) of two chalcone derivatives, (E)-3-(2-methoxyphenyl)-1-(2-(phenylsulfonylamine)phenyl)prop-2-en-1-one (MPSP) and (E)-3-(3-nitrophenyl)-1-(2-(phenylsulfonylamine)phenyl)prop-2-en-1-one (NPSP), in DMSO is reported. The single crystal structures of the compounds, which differ only by the type and position of one substituent, were grown using the slow evaporation technique, and the main structural differences are discussed. The two-photon absorption and first-order hyperpolarizability measurements were performed via the Z-scan technique and hyper-Rayleigh scattering experiment in DMSO. The theoretical calculations were performed using the Density Functional Theory (DFT) at the CAM-B3LYP/6-311++G(d,p) level, and the sum-over-states (SOS) approach in both static and dynamic cases. Besides the electron conjugation achieved by the aromatic rings, olefins, and carbonyl groups, both compounds have a nearly flat chalcone backbone, which is believed to contribute to the nonlinear optical properties. MPSP and NPSP have different positions, even though they have roughly the same conformation and form C-HO interactions. For several studied frequencies, the HRS first hyperpolarizability values for MPSP are greater than those for NPSP, indicating that in most cases the NLO properties of MPSP are better. The comparison among the theoretical and experimental HRS first hyperpolarizability results showed a good agreement. In addition, the two-dimensional second order nonlinear optical spectra obtained from the sum-over-states model indicate good second-order NLO responses of the two chalcone derivatives under external fields. Our findings are important not only to show the potential nonlinear optical application of the two new compounds but also to gain an insight into how different chemical compositions might affect the crystal structures and physico-chemical properties.

6.
J Mol Struct ; 1219: 128559, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-32536721

RESUMEN

Compounds with dihydroquinoline-4(1H)-one nuclei have been reported in the literature for being important in the development of medicines due to their broad spectrum of activities. In this way, the structural knowledge of this class becomes relevant for obtaining new materials with desired biological properties. This study presents the structural elucidation of five halogenated dihydroquinolines, as well as the discussion about the effect on the molecular conformation of the type and position of halogen atom on aromatic rings. Compounds I and IV differ in halogen substitution on 2-phenyl ring, while compounds III and V differ in halogen substitution on the benzylidene ring. Moreover, compound II has a para-substituted 2-phenyl ring in their molecular structure. The crystal packing of all five molecules is mainly ruled by C-H⋯O and C-H···halogen interactions that form dimers and chains. The shift in position and the kind of the halogen in ring C shows a starring role in the conformation of the studied compounds, and the packaging of these compounds is more susceptible to variations when the halogen position changes.

7.
J Phys Chem A ; 123(40): 8632-8643, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31525043

RESUMEN

The application of organic crystals on nonlinear optical (NLO) materials has been increasing in recent years, and compounds like chalcones are interesting due to their significant third-order nonlinear properties. Hereof, we describe the synthesis, molecular structure, supramolecular arrangement, and theoretical calculations for a bromine-chalcone 3-(4-bromophenyl)-1-[3-(2-oxo-2-phenylethoxy)phenyl]-propenone (BC), which crystallized into noncentrosymmetric space group Pc. Also, a comprehensive topological analysis performed by QTAIM highlights the observed halogen bonds on solid state. In addition, the thermal stability was studied in temperatures smaller than 800 °C showing BC crystal as potential optical devices at temperatures up to 250 °C. Finally, the NLO properties indicate a photonic application based on strong third-order nonlinear response.

8.
J Phys Chem A ; 123(1): 153-162, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30561204

RESUMEN

Organic molecules with electron acceptors or withdrawal substituents terminal at π-conjugated system are promising candidates to be explored as materials with high linear and nonlinear optical properties. On the basis of these features, a novel asymmetric azine ( 7E, 8E)-2-(3-methoxy-4-hydroxy-benzylidene)-1-(4-nitrobenzylidene)hydrazineC15H13N3O4 (NMZ) was synthesized. The molecular structure of NMZ was elucidated by X-ray crystallography and the supramolecular arrangement was analyzed from Hirshfeld surface methodology. An iterative electrostatic scheme using a super molecule approach, where neighboring molecules are represented by charge points, was employed to investigate optical dipole moment (µ), the linear polarization (α) and the first (ß) and second (γ) hyperpolarizabilities. The NMZ crystallized in the centrosymetric space group P21/n and packs via combined O-H···O, C-H···O, and N···π interactions. The macroscopic property of third order χ(3) found for the NMZ is 298.62 times greater than values reported for chalcone derivative (2 E)-1-(3-bromophenyl)-3-[4 (methylsulfanyl)phenyl]prop-2-en-1-one. The results for NMZ indicate a good nonlinear optical effect.

9.
J Phys Chem A ; 118(43): 10048-56, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25268804

RESUMEN

The ability of the chalcone, C18H18O4, to form solvates was theoretically and experimentally investigated. The unit cell with Z' > 1, composed of two independent chalcone molecules (α and ß), shows the formation of a stable molecular complex which is related with the presence of methanol in this crystal lattice. Aiming to understand the process of crystal lattice stabilization, a combination of techniques was used, including X-ray diffraction (XRD), computational molecular modeling, and an ab initio molecular dynamic. The results show that α and ß molecules are sterically barred from forming a direct hydrogen bond with one other. In addition, the presence of the methanol molecule stabilizes the crystal structure by a bifurcated O-H···O interaction acting as a bridge between them. The theoretical thermodynamic parameter and the rigid potential energy surface scan describe the role of methanol in the energy stabilization of the crystal. The absence of the methanol compound in the asymmetric unit destabilizes the crystalline structure, making the formation process of the asymmetric unit nonspontaneous. The energy difference between α and ß molecules is around 0.80 kcal·mol(-1), indicating that both are stable and equally possible in the crystal lattice. The analysis of the energy profile of the C14-O2···H1-O3 and O2-H1···O3-C17 torsion angles in the crystal packing shows that the α and ß molecules are confined in the stable potential region, in agreement with the two conformers in the asymmetric unit. The Molecular Electrostatic Potential (MEP) shows that the methanol has no steric effects, which prevents small motion around the torsion angles.


Asunto(s)
Chalcona/química , Metanol/química , Teoría Cuántica , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular
10.
J Mol Model ; 30(5): 157, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698260

RESUMEN

CONTEXT: The advancement in the development of second-generation drugs in the field of antihistamines represents a significant milestone in the management of allergic diseases, targeting the effects of histamine. The efficacy of bilastine in treating allergic disorders has sparked interest in investigating its polymorphism, a crucial property that impacts quality, safety, and effectiveness as per regulatory guidelines. This study examines the polymorphism of bilastine, focusing on two crystalline forms labeled as Form I and Form II. Utilizing advanced analytical techniques, the research explores the structural characteristics and molecular interactions within these forms. Geometric parameters, such as bond lengths, bond angles, and torsion angles, are examined to comprehend molecular conformations and crystal packing arrangements. Hydrogen bonding, covalent bonds, and van der Waals forces contribute to the unique supramolecular arrangements in these forms. This study provides a significant contribution to understanding bilastine's polymorphism, offering critical insights to researchers and regulatory bodies to ensure the quality, efficacy, and safety of antihistamine products. METHODS: The molecular conformation of two bilastine forms was obtained through DFT with the exchange-correlation functional M06-2X and the 6-311 + + G(d,p) basis set, and the results were compared with the experimental X-ray. The atomic coordinates were obtained directly from the crystalline structures, and charge transfer was also investigated using frontier molecular orbitals (HOMO and LUMO), and MEP map in order to evaluate the energies associated with charge transfers and regions of high electron affinity. The geometric and topological parameters and intermolecular interactions in the crystals were analyzed using Hirshfeld Surface.

11.
Acta Crystallogr C ; 69(Pt 3): 267-72, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23459353

RESUMEN

The structures of two arylsulfonamide para-alkoxychalcones, namely, N-{4-[(E)-3-(4-methoxyphenyl)prop-2-enoyl]phenyl}benzenesulfonamide, C22H19NO4S, (I), and N-{4-[(E)-3-(4-ethoxyphenyl)prop-2-enoyl]phenyl}benzenesulfonamide, C23H21NO4S, (II), reveal the effect of the inclusion of one -CH2- group between the CH3 branch and the alkoxy O atom on the conformation and crystal structure. Although the molecular conformations and one-dimensional chain motifs are the same in both structures, their crystallographic symmetry, number of independent molecules and crystal packing are different. The crystal packing of (I) is stabilized by weak C-H...π and π-π interactions, while only C-H...π contacts occur in the structure of (II). The role of the additional methylene group in the crystal packing can also be seen in the fact that the alkoxy O atom is an acceptor in nonclassical hydrogen bonds only in the para-ethoxy analogue, (II). The remarkable similarity between the crystal packing features of (I) and (II) lies in the formation of N-H...O hydrogen-bonded ribbons, a synthon commonly found in related compounds.


Asunto(s)
Chalconas/química , Sulfonamidas/química , Cristalografía por Rayos X , Enlace de Hidrógeno , Conformación Molecular , Estructura Molecular , Bencenosulfonamidas
12.
J Mol Model ; 29(6): 197, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37268806

RESUMEN

INTRODUCTION: Enalapril maleate is an antihypertensive ethyl ester pro-drug with two crystalline forms. A network of hydrogen bonds in both polymorphs plays an important role on solid-state stability, charge transfer process and degradation reactions (when exposed to high humidity, temperature and/or pH changes). COMPUTATIONAL PROCEDURES: Supramolecular arrangement was proposed by Hirshfeld surface using the CrystalExplorer17 software and quantum theory of atoms in molecules. The electronic structure properties were calculated using the functional hybrid M06-2X with 6-311++G** base function employing diffuse and polarization functions to improve the description of hydrogen atoms on intermolecular interactions. Also, the H+ charge transfer between enalapril and maleate molecules was performed using Car-Parrinello molecular dynamics with the Verlet algorithm. In both simulations, the temperature of the ionic system was maintained around 300 K using the Nosé-Hoover thermostat and the electronic system evolved without the use of the thermostat. RESULTS: This work evaluates the effect of maleate on the structural stability of enalapril maleate solid state. The electronic structural analysis points out a partially covalent character for N1-H∙∙∙O7 interaction; and the molecular dynamic showed a decentralized hydrogen on maleate driving a decomposition by charge transfer process while a centered hydrogen driving the stabilization. The charge transfer process and the mobility of the proton (H+) between enalapril and maleate molecules was demonstrated using supramolecular modeling analyses and molecular dynamics calculations.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Enalapril , Enalapril/química , Inhibidores de la Enzima Convertidora de Angiotensina/química , Simulación de Dinámica Molecular , Estabilidad de Medicamentos , Maleatos , Hidrógeno
13.
J Mol Model ; 29(8): 241, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37436478

RESUMEN

CONTEXT: The design and synthesis of safe and highly active sulfonylurea herbicides is still a challenge. Therefore, following some principles of structure-activity relationship (SAR) of sulfonylurea herbicides, this work focuses on evaluating two sulfonylurea derivatives bearing electron-withdrawing substituents, namely, -(CO)OCH3 and -NO2 on the aryl group, on herbicidal activity. To understand the effects caused by the substituent groups, the molecular and electronic structures of the sulfonylureas were evaluated by density functional theory. Likewise, the crystalline supramolecular arrangements of both compounds were analyzed by Hirshfeld surface, QTAIM, and NBO, with the aim of verifying changes in intermolecular interactions caused by substituent groups. Finally, through a toxicophoric analysis, we were able to predict the interacting groups in their biological target, acetolactate synthase, and verify the interactions with the binding site. METHODS: All theoretical calculations were conducted using the highly parameterized empirical exchange-correlation functional M06-2X accompanied by the diffuse and polarized basis set 6-311++G(d,p). The atomic coordinates were obtained directly from the crystalline structures, and from the energies of the frontier molecular orbitals (HOMO and LUMO), chemical descriptors were obtained that indicated the influence of the functional groups in the sulfonylureas on the reactivity of the molecules. The intermolecular interactions in the crystals were analyzed using the Hirshfeld, QTAIM, and NBO surfaces. Toxicophoric modeling was performed by the PharmaGist webserver and molecular docking calculations were performed by the GOLD 2022.1.0 software package so that the ligand was fitted to the binding site in a 10 Å sphere. For this, genetic algorithm parameters were used using the ChemPLP scoring function for docking and ASP for redocking.


Asunto(s)
Acetolactato Sintasa , Herbicidas , Simulación del Acoplamiento Molecular , Modelos Moleculares , Acetolactato Sintasa/química , Acetolactato Sintasa/metabolismo , Herbicidas/química , Herbicidas/farmacología , Compuestos de Sulfonilurea/química , Compuestos de Sulfonilurea/farmacología , Pirimidinas
14.
Front Chem ; 11: 1267634, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37795387

RESUMEN

Introduction: The green revolution model that is followed in the Brazilian Cerrado is dependent on mechanization, chemical fertilization for soil dressing and correction, and the use of herbicides. Paraquat is a methyl viologen herbicide marketed as bipyridylium dichloride salts and used (in low doses) to combat weeds in their post-emergence stage. It is a non-selective pesticide that causes the peroxidation of the lipids that make up the cell membrane, and when it comes into contact with foliage, it results in the death of the plant. Methods: The effect of water molecules co-crystallized in Paraquat salt structures was analyzed in anhydrous, dihydrate, and trihydrate forms to understand those physicochemical properties in its redox activity. The frontier molecular orbitals were also carried out using DFT to obtain the chemical reactivity of the bipyridylium cation. Finally, the supramolecular arrangements were evaluated to analyze the physicochemical stability and acquire insights on superoxide anions. Results and discussion: The electronic structure indicated that the BP cation presents an acidic character due to its low ELUMO value, while the salt has a more basic character due to its high EHOMO value. For this reason, the BP ion is more susceptible to reduction during the weeds' photosynthesis process. During the process of plant photosynthesis, PQ is reduced to form a stable radical cation. In the supramolecular arrangement, the presence of water molecules increases the number of strong H-bonds, while the weak/moderate H-bonds are stabilized. PQ's toxic effects are observed in wildlife, domesticated animals, human populations, and ecosystems. The influence of PQ on the terrestrial environment is limited because of the soil adsorption capacity associated with good agricultural practices. The current use of good agricultural practices in the Cerrado seems not to prevent the environmental impacts of herbicides like PQ because it aims for the expansion and profitability of large-scale farming based on input-intensive practices instead of sustainable agriculture processes.

15.
ACS Omega ; 8(43): 40764-40774, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37929093

RESUMEN

The Cerrado biome is the world's largest and most diversified tropical savanna. Despite its diversity, there remains a paucity of scientific discussion and evidence about the medicinal use of Cerrado plants. One of the greatest challenges is the complexity of secondary metabolites, such as flavonoids, present in those plants and their extraction, purification, and characterization, which involves a wide range of approaches, tools, and techniques. Notwithstanding these difficulties, the search for accurately proven medicinal plants against cancer, a leading cause of death worldwide, has contributed to this growing area of research. This study set out to extract, purify, and characterize 3-O-methylquercetin isolated from the plant Strychnos pseudoquina A.St.-Hil. (Loganiaceae) and to test it for antiproliferative activity and selectivity against different tumor and nontumor human cell lines. A combined-method approach was employed using 1H and 13C nuclear magnetic resonance, thermogravimetric analysis, differential scanning calorimetry, single-crystal X-ray diffraction, Hirshfeld surface analysis, and theoretical calculations to extensively characterize this bioflavonoid. 3-O-methylquercetin melts around 275 °C and crystallizes in a nonplanar conformation with an angle of 18.02° between the pyran ring (C) and the phenyl ring (B), unlike quercetin and luteolin, which are planar. Finally, the in vitro cytotoxicity of 3-O-methylquercetin was compared with data from quercetin, luteolin, and cisplatin, showing that structural differences influenced the antiproliferative activity and the selectivity against different tumor cell lines.

16.
Int J Biol Macromol ; 253(Pt 5): 127085, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37774819

RESUMEN

This study aimed to investigate the application of biopolymeric materials (chitosan, gelatin, and pomegranate peel extract as photosensitizer) and antimicrobial photodynamic therapy (aPDT) on the physicochemical and microbial safety of strawberries. The photosensitizer potential of the materials was confirmed by a light-dose-dependent photobleaching profile. The application of light (525 nm; 50 J cm-2) decreased by >2 log CFU mL-1 the survival of Staphylococcus aureus on the surface of the photoactive-biopolymeric films. Moreover, the materials did not present in vivo cytotoxicity using Danio rerio (Zebrafish) as well as cytophytotoxic, genotoxic, or mutagenic potentials against Allium cepa plant model, which points out their safety to be used as films without posing a risk to the humans and the environment. The photoactive-polymeric coatings were able to maintain the strawberries weight, and the association with green light was 100 % effective in delaying fungal contamination. These coated-strawberries presented a significant reduction in S. aureus survival after light application (5.47-4.34 log CFU mL-1). The molecular level analysis of the photoactive compound cyanidin-3-glucoside indicates absorption on UV-Vis consistent with aPDT action. Therefore, this study showed that the antimicrobial effects of aPDT combined with photoactive-biopolymeric coatings were enhanced, while the quality of the strawberries was maintained.


Asunto(s)
Antiinfecciosos , Quitosano , Fragaria , Granada (Fruta) , Humanos , Animales , Quitosano/farmacología , Quitosano/química , Granada (Fruta)/química , Fragaria/microbiología , Fármacos Fotosensibilizantes , Gelatina , Staphylococcus aureus , Pez Cebra , Antiinfecciosos/farmacología , Antiinfecciosos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
17.
Chemosphere ; 324: 138278, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36878364

RESUMEN

The excessive use of pesticides and the demand for environmentally friendly compounds have driven the focus to detailed studies of the environmental destination of these compounds. Degradation by hydrolysis of pesticides, when released into the soil, can result in the formation of metabolites with potentially adverse effects on the environment. Moving in this direction, we investigated the mechanism of acid hydrolysis of the herbicide ametryn (AMT) and predicted the toxicities of metabolites through experimental and theoretical approaches. The formation of ionized hydroxyatrazine (HA) occurs with the release of the SCH3- group and the addition of H3O+ to the triazine ring. The tautomerization reactions privileged the conversion of AMT into HA. Furthermore, the ionized HA is stabilized by an intramolecular reaction that provides the molecule in two tautomeric states. Experimentally, the hydrolysis of AMT was obtained under acidic conditions and at room temperature with HA as the main product. HA was isolated in a solid state through its crystallization as organic counterions. The mechanism of conversion of AMT to HA and the experimental investigation of the reaction kinetics allowed us to determine the dissociation of CH3SH as the rate-controlling step in the degradation process that culminates in a half-life between 7 and 24 months under typical acid soil conditions of the Brazilian Midwest - region with strong agricultural and livestock vocation. The keto and hydroxy metabolites showed substantial thermodynamic stability and a decrease in toxicity compared to AMT. We hope that this comprehensive study will support the understanding of the degradation of s-triazine-based pesticides.


Asunto(s)
Herbicidas , Triazinas , Hidrólisis , Estructura Molecular , Cinética , Triazinas/química , Herbicidas/toxicidad , Suelo
18.
Photodiagnosis Photodyn Ther ; 43: 103654, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37308043

RESUMEN

Antimicrobial photodynamic therapy (aPDT) is an alternative tool to commercial antibiotics for the inactivation of pathogenic bacteria (e.g., S. aureus). However, there is still a lack of understanding of the molecular modeling of the photosensitizers and their mechanism of action through oxidative pathways. Herein, a combined experimental and computational evaluation of curcumin as a photosensitizer against S. aureus was performed. The radical forms of keto-enol tautomers and the energies of curcumin's frontier molecular orbitals were evaluated by density functional theory (DFT) to point out the photodynamic action as well as the photobleaching process. Furthermore, the electronic transitions of curcumin keto-enol tautomers were undertaken to predict the transitions as a photosensitizer during the antibacterial photodynamic process. Moreover, molecular docking was used to evaluate the binding affinity with the S. aureus tyrosyl-tRNA synthetase as the proposed a target for curcumin. In this regard, the molecular orbital energies show that the curcumin enol form has a character of 4.5% more basic than the keto form - the enol form is a more promising electron donor than its tautomer. Curcumin is a strong electrophile, with the enol form being 4.6% more electrophilic than its keto form. In addition, the regions susceptible to nucleophilic attack and photobleaching were evaluated by the Fukui function. Regarding the docking analysis, the model suggested that four hydrogen bonds contribute to the binding energy of curcumin's interaction with the ligand binding site of S. aureus tyrosyl-tRNA synthetase. Finally, residues Tyr36, Asp40, and Asp177 contact curcumin and may contribute to orienting the curcumin in the active area. Moreover, curcumin presented a photoinactivation of 4.5 log unit corroborating the necessity of the combined action of curcumin, light, and O2 to promote the photooxidation damage of S. aureus. These computational and experimental data suggest insights regarding the mechanism of action of curcumin as a photosensitizer to inactivate S. aureus bacteria.


Asunto(s)
Curcumina , Staphylococcus aureus Resistente a Meticilina , Fotoquimioterapia , Tirosina-ARNt Ligasa , Curcumina/farmacología , Curcumina/química , Fármacos Fotosensibilizantes/farmacología , Fotoquimioterapia/métodos , Staphylococcus aureus , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología
19.
Fitoterapia ; 167: 105488, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36990290

RESUMEN

Previous studies have attributed the prominent analgesic, hallucinogenic, sedative, and anxiolytic properties of Salvia divinorum to Salvinorin A. However, the overall pharmacological profile of this isolate limits its clinical applications. To address these limitations, our study evaluates the C(22)-fused-heteroaromatic analogue of salvinorin A [2-O-salvinorin B benzofuran-2-carboxylate] (P-3l) in mice nociception and anxiety models while assessing possible mechanism of action. In comparison with the control group, orally administered P-3l (1, 3, 10, and 30 mg/kg) attenuates acetic acid-induced abdominal writhing, formalin-induced hind paw licking, the thermal reaction to the hotplate, and/or aversive response in the elevated plus-maze, open field, and light-dark box; and potentiates the effect of morphine and diazepam at sub-effective doses (1.25 and 0.25 mg/kg, respectively) without eliciting significant alterations in relative organ weight, or haematological or biochemical parameters. The in vivo blockade of P-3 l effects by naloxone (non-selective opioid receptor antagonist), naloxonazine (antagonist of specific subtypes mu1 of µ-OR), and nor-binaltorphimine (selective ĸ-OR antagonist) supports initial results from binding assays and the interpretations made possible from computational modeling of the interactions of P-3 l with the opioid receptor subtypes. In addition to the opioidergic mechanism, the blockade of the P-3 l effect by flumazenil suggests benzodiazepine binding site involvement in its biological activities. These results support P-3 l potentially possessing clinical utility and substantiate the need for additional pharmacological characterization.


Asunto(s)
Ansiolíticos , Ratones , Animales , Ansiolíticos/farmacología , Estructura Molecular , Analgésicos/farmacología
20.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 8): o2585, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22905010

RESUMEN

The title compound, C(15)H(13)NO, has two crystallographically independent mol-ecules in the asymmetric unit which differ principally in the periplanar angle formed by the benzene and pyridine rings [41.41 (3) and 17.92 (5)°]. The mol-ecules exhibit an E conformation between the keto group with respect to the olefin double bond.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA