Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Neurooncol ; 146(2): 239-246, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31875307

RESUMEN

BACKGROUND AND PURPOSE: Glioblastoma multiforme (GBM) is the most aggressive subtype of malignant gliomas, with an average survival rate of 15 months after diagnosis. More than 90% of all GBMs have activating mutations in the MAPK/ERK pathway. Recently, we showed the allosteric MEK1/2 inhibitor binimetinib (MEK162) to inhibit cell proliferation and to enhance the effect of radiation in preclinical human GBM models. Because the free drug cannot pass the blood-brain barrier (BBB), we investigated the use of nanocarriers for transport of the drug through the BBB and its efficacy when combined with radiotherapy and temozolomide (TMZ) in glioma spheroids. METHODS: In vitro studies were performed using multicellular U87 human GBM spheroids. Polymeric nanocarriers (polymersomes) were loaded with MEK162. The interaction between nanocarrier delivered MEK162, irradiation and TMZ was studied on the kinetics of spheroid growth and on protein expression in the MAPK/ERK pathway. BBB passaging was evaluated in a transwell system with human cerebral microvascular endothelial (hCMEC/D3) cells. RESULTS: MEK162 loaded polymersomes inhibited spheroid growth. A synergistic effect was found in combination with fractionated irradiation and an additive effect with TMZ on spheroid volume reduction. Fluorescent labeled polymersomes were taken up by human cerebral microvascular endothelial cells and passed the BBB in vitro. CONCLUSION: MEK162 loaded polymersomes are taken up by multicellular spheroids. The nanocarrier delivered drug reduced spheroid growth and inhibited its molecular target. MEK162 delivered via polymersomes showed interaction with irradiation and TMZ. The polymersomes crossed the in vitro BBB model and therewith offer exciting challenges ahead for delivery of therapeutics agents to brain tumours.


Asunto(s)
Bencimidazoles/farmacología , Quimioradioterapia/métodos , Evaluación Preclínica de Medicamentos , Glioma/terapia , Nanopartículas/administración & dosificación , Esferoides Celulares/patología , Temozolomida/farmacología , Antineoplásicos Alquilantes/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/efectos de la radiación , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Proliferación Celular , Portadores de Fármacos/química , Quimioterapia Combinada , Glioma/patología , Humanos , Nanopartículas/química , Polímeros/química , Transducción de Señal , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/efectos de la radiación , Células Tumorales Cultivadas
2.
Drug Resist Updat ; 40: 17-24, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30439622

RESUMEN

Glioblastoma is the most common and malignant form of brain cancer, for which the standard treatment is maximal surgical resection, radiotherapy and chemotherapy. Despite these interventions, mean overall survival remains less than 15 months, during which extensive tumor infiltration throughout the brain occurs. The resulting metastasized cells in the brain are characterized by chemotherapy resistance and extensive intratumoral heterogeneity. An orthogonal approach attacking both intracellular resistance mechanisms as well as intercellular heterogeneity is necessary to halt tumor progression. For this reason, we established the WINDOW Consortium (Window for Improvement for Newly Diagnosed patients by Overcoming disease Worsening), in which we are establishing a strategy for rational selection and development of effective therapies against glioblastoma. Here, we overview the many challenges posed in treating glioblastoma, including selection of drug combinations that prevent therapy resistance, the need for drugs that have improved blood brain barrier penetration and strategies to counter heterogeneous cell populations within patients. Together, this forms the backbone of our strategy to attack glioblastoma.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Sistemas de Liberación de Medicamentos , Glioblastoma/genética , Glioblastoma/patología , Humanos , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Bibliotecas de Moléculas Pequeñas/efectos adversos
3.
BMC Cancer ; 17(1): 204, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28320338

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is the most common, invasive and deadly primary type of malignant brain tumor. The Phosphatidylinositol-3-Kinase/AKT (PI3K/AKT) pathway is highly active in GBM and has been associated with increased survival and resistance to therapy. The aim of this study is to investigate the effects of AKT inhibition in combination with the current standard of care which consists of irradiation and temozolomide (TMZ) on human malignant glioma cells growing adherent and as multicellular spheroids in vitro. METHODS: The effects of the allosteric inhibitor MK2206 combined with irradiation and TMZ were assessed on glioma cells growing adherent and as multicellular 3D spheroids. The interaction was studied on proliferation, clonogenic cell survival, cell invasion, -migration and on expression of key proteins in the PI3K-AKT pathway by western blot. RESULTS: A differential effect was found at low- (1 µM) and high dose (10 µM) MK2206. At 1 µM, the inhibitor reduced phosphorylation of Thr308 and Ser473 residues of AKT in both adherent cells and spheroids. Low dose MK2206 delayed spheroid growth and sensitized spheroids to both irradiation and TMZ in a synergistic way (Combination index <0.35). In contrast, neither low nor high dose MK2206 did enhance therapy sensitivity in adherent growing cells. Effective inhibition of invasion and migration was observed only at higher doses of MK2206 (>5 µM). CONCLUSIONS: The data show that a 3D spheroid model show different sensitivity to irradiation when combined with AKT inhibition. Thereby we show that MK2206 has potential synergistic efficacy to the current standard of care for glioma patients.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/efectos de la radiación , Antineoplásicos Alquilantes/farmacología , Western Blotting , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Dacarbazina/análogos & derivados , Dacarbazina/farmacología , Sinergismo Farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Temozolomida
4.
Blood Cells Mol Dis ; 46(1): 19-26, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20728381

RESUMEN

GBA3, also known as cytosolic ß-glucosidase, is thought to hydrolyze xenobiotic glycosides in man. Deficiency of glucocerebrosidase (GBA), a ß-glucosidase degrading glucosylceramide, underlies Gaucher disease. We examined GBA3, which recently was proposed to degrade glucosylceramide and influence the clinical manifestation of Gaucher disease. Recombinant GBA3 was found to hydrolyze artificial substrates such as 4-methylumbelliferyl-ß-D-glucoside and C6-NBD-glucosylceramide, but hydrolysis of naturally occurring lipids like glucosylceramide and glucosylsphingosine was hardly detected. Consistent with this, inhibition of GBA3 in cultured cells using a novel inhibitor (alpha-1-C-nonyl-DIX) did not result in an additional increase in glucosylceramide as compared to GBA inhibition alone. Examination of the GBA3 gene led to the identification of a common substitution in its open reading frame (1368T→A), resulting in a truncated GBA3 protein missing the last α-helix of its (ß/α)(8) barrel. Both recombinant 1368A GBA3 and 1368A enzyme from spleen of a homozygous individual were found to be inactive. Amongst non-neuronopathic (type 1) Gaucher disease patients, we subsequently identified individuals being wild-type, heterozygous, or homozygous for the GBA3 1368T→A mutation. No correlation was observed between GBA3 1368A/T haplotypes and severity of type 1 Gaucher disease manifestation. In conclusion, GBA3 does not seem to modify type 1 Gaucher disease manifestation.


Asunto(s)
Enfermedad de Gaucher/enzimología , Enfermedad de Gaucher/fisiopatología , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Modelos Moleculares , Especificidad por Sustrato
5.
Nat Commun ; 11(1): 2935, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32523045

RESUMEN

Personalized cancer treatments using combinations of drugs with a synergistic effect is attractive but proves to be highly challenging. Here we present an approach to uncover the efficacy of drug combinations based on the analysis of mono-drug effects. For this we used dose-response data from pharmacogenomic encyclopedias and represent these as a drug atlas. The drug atlas represents the relations between drug effects and allows to identify independent processes for which the tumor might be particularly vulnerable when attacked by two drugs. Our approach enables the prediction of combination-therapy which can be linked to tumor-driving mutations. By using this strategy, we can uncover potential effective drug combinations on a pan-cancer scale. Predicted synergies are provided and have been validated in glioblastoma, breast cancer, melanoma and leukemia mouse-models, resulting in therapeutic synergy in 75% of the tested models. This indicates that we can accurately predict effective drug combinations with translational value.


Asunto(s)
Sinergismo Farmacológico , Animales , Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Biología Computacional , Combinación de Medicamentos , Glioblastoma/metabolismo , Humanos , Modelos Logísticos , Melanoma/metabolismo
6.
Mol Cancer Ther ; 17(2): 347-354, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28958992

RESUMEN

Glioblastoma (GBM) is a highly aggressive and lethal brain cancer type. PI3K and MAPK inhibitors have been studied preclinically in GBM as monotherapy, but not in combination with radiotherapy, which is a key component of the current standard treatment of GBM. In our study, GBM cell lines and patient representative primary cultures were grown as multicellular spheroids. Spheroids were treated with a panel of small-molecule drugs including MK2206, RAD001, BEZ235, MLN0128, and MEK162, alone and in combination with irradiation. Following treatment, spheroid growth parameters (growth rate, volume reduction, and time to regrow), cell-cycle distribution and expression of key target proteins were evaluated. In vivo, the effect of irradiation (3 × 2 Gy) without or with MEK162 (50 mg/kg) was studied in orthotopic GBM8 brain tumor xenografts with endpoints tumor growth and animal survival. The MAPK-targeting agent MEK162 was found to enhance the effect of irradiation as demonstrated by growth inhibition of spheroids. MEK162 downregulated and dephosphorylated the cell-cycle checkpoint proteins CDK1/CDK2/WEE1 and DNA damage response proteins p-ATM/p-CHK2. When combined with radiation, this led to a prolonged DNA damage signal. In vivo data on tumor-bearing animals demonstrated a significantly reduced growth rate, increased growth delay, and prolonged survival time. In addition, RNA expression of responsive cell cultures correlated to mesenchymal stratification of patient expression data. In conclusion, the MAPK inhibitor MEK162 was identified as a radiosensitizer in GBM spheroids in vitro and in orthotopic GBM xenografts in vivo The data are supportive for implementation of this targeted agent in an early-phase clinical study in GBM patients. Mol Cancer Ther; 17(2); 347-54. ©2017 AACRSee all articles in this MCT Focus section, "Developmental Therapeutics in Radiation Oncology."


Asunto(s)
Bencimidazoles/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/radioterapia , Glioblastoma/tratamiento farmacológico , Glioblastoma/radioterapia , Fármacos Sensibilizantes a Radiaciones/farmacología , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Femenino , Glioblastoma/patología , Humanos , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 2/antagonistas & inhibidores , Ratones , Ratones Desnudos , Bibliotecas de Moléculas Pequeñas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Oncotarget ; 6(40): 42717-32, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26015408

RESUMEN

The clinical efficacy of EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) harbouring activating EGFR mutations is limited by the emergence of acquired resistance, mostly ascribed to the secondary EGFR-T790M mutation. Selective EGFR-T790M inhibitors have been proposed as a new, extremely relevant therapeutic approach. Here, we demonstrate that the novel irreversible EGFR-TKI CNX-2006, a structural analog of CO-1686, currently tested in a phase-1/2 trial, is active against in vitro and in vivo NSCLC models expressing mutant EGFR, with minimal effect on the wild-type receptor. By integration of genetic and functional analyses in isogenic cell pairs we provide evidence of the crucial role played by NF-κB1 in driving CNX-2006 acquired resistance and show that NF-κB activation may replace the oncogenic EGFR signaling in NSCLC when effective and persistent inhibition of the target is achieved in the presence of the T790M mutation. In this context, we demonstrate that the sole, either genetic or pharmacologic, inhibition of NF-κB is sufficient to reduce the viability of cells that adapted to EGFR-TKIs. Overall, our findings support the rational inhibition of members of the NF-κB pathway as a promising therapeutic option for patients who progress after treatment with novel mutant-selective EGFR-TKIs.


Asunto(s)
Acrilamidas/farmacología , Azetidinas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/patología , Resistencia a Antineoplásicos/fisiología , Neoplasias Pulmonares/patología , FN-kappa B/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Animales , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Receptores ErbB/antagonistas & inhibidores , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , ARN Interferente Pequeño , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Curr Pharm Des ; 19(5): 951-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22973963

RESUMEN

Glioblastoma multiforme (GMB) is the most malignant and common type of all astrocytic tumors. Current standard of care entails maximum surgical resection of the tumor, followed by radiotherapy and chemotherapy, usually by the alkylating agent Temozolomide (TMZ). Despite this aggressive combination therapy, the survival rate of GBM patients is still low. Deregulation of the phosphatidylinositol 3-kinase (PI3K) / Akt pathway is a frequent occurrence in GBM. Activation of the PI3K-Akt pathway results in disturbance of control of cell growth and cell survival, which contributes to a competitive growth advantage, metastatic competence as well as to therapy resistance. The PI3K-Akt pathway is therefore an attractive therapeutic target in GBM, because it serves as a convergence point for malignant processes and intervention might overcome resistance to chemotherapy and radiation. The present review shows the importance of Akt in GBM and its role in the DNA damage response. Furthermore, an overview is given of specific inhibitors of Akt which are currently being tested in preclinical and in early phase clinical studies.


Asunto(s)
Antineoplásicos/farmacología , Glioblastoma/terapia , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Supervivencia Celular , Quimioradioterapia/métodos , Daño del ADN , Dacarbazina/análogos & derivados , Dacarbazina/farmacología , Diseño de Fármacos , Resistencia a Antineoplásicos , Glioblastoma/patología , Humanos , Terapia Molecular Dirigida , Tasa de Supervivencia , Temozolomida
9.
Cancer Res ; 71(10): 3563-72, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21471404

RESUMEN

MicroRNA (miRNA) expression profiling studies revealed a number of miRNAs dysregulated in the malignant brain tumor glioblastoma. Molecular functions of these miRNAs in gliomagenesis are mainly unknown. We show that inhibition of miR-10b, a miRNA not expressed in human brain and strongly upregulated in both low-grade and high-grade gliomas, reduces glioma cell growth by cell-cycle arrest and apoptosis. These cellular responses are mediated by augmented expression of the direct targets of miR-10b, including BCL2L11/Bim, TFAP2C/AP-2γ, CDKN1A/p21, and CDKN2A/p16, which normally protect cells from uncontrolled growth. Analysis of The Cancer Genome Atlas expression data set reveals a strong positive correlation between numerous genes sustaining cellular growth and miR-10b levels in human glioblastomas, while proapoptotic genes anticorrelate with the expression of miR-10b. Furthermore, survival of glioblastoma patients expressing high levels of miR-10 family members is significantly reduced in comparison to patients with low miR-10 levels, indicating that miR-10 may contribute to glioma growth in vivo. Finally, inhibition of miR-10b in a mouse model of human glioma results in significant reduction of tumor growth. Altogether, our experiments validate an important role of miR-10b in gliomagenesis, reveal a novel mechanism of miR-10b-mediated regulation, and suggest the possibility of its future use as a therapeutic target in gliomas.


Asunto(s)
Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioma/metabolismo , MicroARNs/biosíntesis , Animales , Neoplasias Encefálicas/metabolismo , Ciclo Celular , Línea Celular Tumoral , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Silenciador del Gen , Células HeLa , Humanos , Ratones , Ratones Desnudos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA