RESUMEN
BACKGROUND: Patients with von Hippel-Lindau (VHL) disease have a high incidence of renal cell carcinoma owing to VHL gene inactivation and constitutive activation of the transcription factor hypoxia-inducible factor 2α (HIF-2α). METHODS: In this phase 2, open-label, single-group trial, we investigated the efficacy and safety of the HIF-2α inhibitor belzutifan (MK-6482, previously called PT2977), administered orally at a dose of 120 mg daily, in patients with renal cell carcinoma associated with VHL disease. The primary end point was objective response (complete or partial response) as measured according to the Response Evaluation Criteria in Solid Tumors, version 1.1, by an independent central radiology review committee. We also assessed responses to belzutifan in patients with non-renal cell carcinoma neoplasms and the safety of belzutifan. RESULTS: After a median follow-up of 21.8 months (range, 20.2 to 30.1), the percentage of patients with renal cell carcinoma who had an objective response was 49% (95% confidence interval, 36 to 62). Responses were also observed in patients with pancreatic lesions (47 of 61 patients [77%]) and central nervous system hemangioblastomas (15 of 50 patients [30%]). Among the 16 eyes that could be evaluated in 12 patients with retinal hemangioblastomas at baseline, all (100%) were graded as showing improvement. The most common adverse events were anemia (in 90% of the patients) and fatigue (in 66%). Seven patients discontinued treatment: four patients voluntarily discontinued, one discontinued owing to a treatment-related adverse event (grade 1 dizziness), one discontinued because of disease progression as assessed by the investigator, and one patient died (of acute toxic effects of fentanyl). CONCLUSIONS: Belzutifan was associated with predominantly grade 1 and 2 adverse events and showed activity in patients with renal cell carcinomas and non-renal cell carcinoma neoplasms associated with VHL disease. (Funded by Merck Sharp and Dohme and others; MK-6482-004 ClinicalTrials.gov number, NCT03401788.).
Asunto(s)
Antineoplásicos/uso terapéutico , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Carcinoma de Células Renales/tratamiento farmacológico , Indenos/uso terapéutico , Neoplasias Renales/tratamiento farmacológico , Enfermedad de von Hippel-Lindau/complicaciones , Adulto , Edad de Inicio , Anciano , Anemia/inducido químicamente , Antineoplásicos/efectos adversos , Carcinoma de Células Renales/etiología , Progresión de la Enfermedad , Fatiga/inducido químicamente , Femenino , Estudios de Seguimiento , Hemangioblastoma/tratamiento farmacológico , Humanos , Indenos/efectos adversos , Neoplasias Renales/etiología , Masculino , Persona de Mediana Edad , Neoplasias Primarias Múltiples/tratamiento farmacológico , Tumores Neuroendocrinos/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Enfermedad de von Hippel-Lindau/genéticaRESUMEN
PURPOSE: Genetic testing may alter clinical management for individuals with metastatic prostate cancer by identifying additional therapies. Traditional counseling models are unlikely to enable time-sensitive therapeutic decision-making. This study aimed to determine the feasibility and clinical impact of an alternative hereditary genetic testing model. MATERIALS AND METHODS: As part of a multicenter, single-arm prospective trial, individuals with advanced prostate cancer were referred by their oncologist for testing of 14 genes associated with hereditary prostate cancer. Pretest education (brochure and video) was provided in the oncology clinic. Questionnaires assessing participant satisfaction with both pretest education and decision to undergo genetic testing were collected. A genetic counselor contacted participants by phone to obtain family history and discuss results. Medical records were queried to determine whether a change in clinical management was discussed. RESULTS: Of 501 participants consented to germline analysis, 51 (10.2%) had at least 1 pathogenic/likely pathogenic variant. Change in treatment was discussed with 22/48 (45.8%) of eligible participants who tested positive. Feasibility of this model was assessed by participant satisfaction and turnaround time. Average±SD satisfaction with the pretest education (15.5±2.2, 4-20 scale) and with the decision to undergo genetic testing (17.1±2.9, 4-20 scale) were both high. Results were returned 20 days (median) after sample collection. CONCLUSIONS: Oncologist-initiated germline genetic testing in collaboration with a genetic counselor is a feasible approach to testing advanced prostate cancer patients with impactful clinical actionability. The testing model and educational material serve as resources to clinicians treating prostate cancer patients.
Asunto(s)
Pruebas Genéticas , Neoplasias de la Próstata , Masculino , Humanos , Estudios Prospectivos , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/terapia , Asesoramiento Genético , ConsejoRESUMEN
Cancer immunotherapy tools include antibodies, vaccines, cytokines, oncolytic viruses, bispecific molecules, and cellular therapies. This review will focus on adoptive cellular therapy, which involves the isolation of a patient's own immune cells followed by their ex vivo expansion and reinfusion. The majority of adoptive cellular therapy strategies utilize T cells isolated from tumor or peripheral blood, but may utilize other immune cell subsets. T-cell therapies in the form of tumor-infiltrating lymphocytes, T-cell receptor T cells, and CAR T cells may act as "living drugs" as these infused cells expand, engraft, and persist in vivo, allowing adaptability over time and enabling durable remissions in subsets of patients. Adoptive cellular therapy has been less successful in the management of solid tumors because of poor homing, proliferation, and survival of transferred cells. Strategies are discussed, including expression of transgenes to address these hurdles. Additionally, advances in gene editing using CRISPR/Cas9 and similar technologies are described, which allow for clinically translatable gene-editing strategies to enhance the antitumor activity and to surmount the hostilities advanced by the host and the tumor. Finally, the common toxicities and approaches to mitigate these are reviewed.