Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 572(7768): 189-193, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31391561

RESUMEN

Collisions between cold molecules are essential for studying fundamental aspects of quantum chemistry, and may enable the formation of quantum degenerate molecular matter by evaporative cooling. However, collisions between trapped, naturally occurring molecules have not been directly observed so far owing to the low collision rates of dilute samples. Here we report the direct observation of collisions between cold trapped molecules, without the need for laser cooling. We magnetically capture molecular oxygen in an 800-millikelvin-deep superconducting trap and set bounds on the ratio between the elastic- and inelastic-scattering rates-the key parameter determining the feasibility of evaporative cooling. We further co-trap atoms and molecules and identify collisions between them, paving the way for studies of cold interspecies collisions in a magnetic trap.

2.
Phys Rev Lett ; 121(17): 173402, 2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30411953

RESUMEN

We present a joint experimental and theoretical study of spin dynamics of a single ^{88}Sr^{+} ion colliding with an ultracold cloud of Rb atoms in various hyperfine states. While spin exchange between the two species occurs after 9.1(6) Langevin collisions on average, spin relaxation of the Sr^{+} ion Zeeman qubit occurs after 48(7) Langevin collisions, which is significantly slower than in previously studied systems due to a small second-order spin-orbit coupling. Furthermore, a reduction of the endothermic spin-exchange rate is observed as the magnetic field is increased. Interestingly, we find that while the phases acquired when colliding on the spin singlet and triplet potentials vary largely between different partial waves, the singlet-triplet phase difference, which determines the spin-exchange cross section, remains locked to a single value over a wide range of partial waves, which leads to quantum interference effects.

3.
J Chem Phys ; 148(11): 114101, 2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-29566533

RESUMEN

We present an ab initio theory and computational method for Penning ionization widths. Our method is based on the Fano theory of resonances, algebraic diagrammatic construction (ADC) scheme for many-electron systems, and Stieltjes imaging procedure. It includes an extension of the Fano-ADC scheme [V. Averbukh and L. S. Cederbaum, J. Chem. Phys. 123, 204107 (2005)] to triplet excited states. Penning ionization widths of various He*-H2 states are calculated as a function of the distance R between He* and H2. We analyze the asymptotic (large-R) dependences of the Penning widths in the region where the well-established electron transfer mechanism of the decay is suppressed by the multipole- and/or spin-forbidden energy transfer. The R-12 and R-8 power laws are derived for the asymptotes of the Penning widths of the singlet and triplet excited states of He*(1s2s1,3S), respectively. We show that the electron transfer mechanism dominates Penning ionization of He*(1s2s 3S)-H2 up until the He*-H2 separation is large enough for the radiative decay of He* to become the dominant channel. The same mechanism also dominates the ionization of He*(1s2s 1S)-H2 when R < 5 Å. We estimate that the regime of energy transfer in the He*-H2 Penning ionization cannot be reached by approaching zero collisional temperature. However, the multipole-forbidden energy transfer mechanism can become important for Penning ionization in doped helium droplets.

4.
Phys Rev Lett ; 119(7): 073204, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28949664

RESUMEN

We demonstrate simultaneous deceleration and trapping of a cold atomic and molecular mixture. This is the first step towards studies of cold atom-molecule collisions at low temperatures as well as application of sympathetic cooling. Both atoms and molecules are cooled in a supersonic expansion and are loaded into a moving magnetic trap that brings them to rest via the Zeeman interaction from an initial velocity of 375 m/s. We use a beam seeded with molecular oxygen, and entrain it with lithium atoms by laser ablation prior to deceleration. The deceleration ends with loading of the mixture into a static quadrupole trap, which is generated by two permanent magnets. We estimate 10^{9} trapped O_{2} molecules and 10^{5} Li atoms with background pressure limited lifetime on the order of 1 sec. With further improvements to lithium entrainment we expect that sympathetic cooling of molecules is within reach.

5.
J Phys Chem A ; 121(10): 2194-2198, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28221791

RESUMEN

We recently developed an adiabatic theory for cold molecular collision experiments. In our previous application of this theory ( Pawlak, M.; et al. J. Chem. Phys. 2015 , 143 , 074114 ), we assumed that during the experiment the collision of an atom with a diatom takes place when the diatom is in the ground rotational state and is located in a plane. In this paper, we present how the variational approach of the adiabatic theory for low-temperature collision experiments can be used for the study a 5D collision between the atom and the diatomic molecule with no limitations on its rotational quantum states and no plane restrictions. Moreover, we show here the dramatic differences in the measured reaction rates of He(23S1) + ortho/para-H2 → He(1s2) + ortho/para-H2+ + e- resulting from the anisotropic long-range interactions in the reaction. In collisions of metastable helium with molecular hydrogen in the ground rotational state, the isotropic potential term dominates the dynamics. When the collision is with molecular hydrogen in the first excited rotational state, the nonisotropic interactions play an important role in the dynamics. The agreement of our results with the latest experimental findings ( Klein , A. ; et al. Nat. Phys. 2017 , 13 , 35 - 38 ) is very good.

6.
J Phys Chem A ; 120(19): 3309-15, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-26812560

RESUMEN

Penning ionization reactions in merged beams with precisely controlled collision energies have been shown to accurately probe quantum mechanical effects in reactive collisions. A complete microscopic understanding of the reaction is, however, faced with two major challenges-the highly excited character of the reaction's entrance channel and the limited precision of even the best state-of-the-art ab initio potential energy surfaces. Here, we suggest photoassociation spectroscopy as a tool to identify the character of orbiting resonances in the entrance channel and probe the ionization width as a function of interparticle separation. We introduce the basic concept, using the example of metastable helium and argon, and discuss the general conditions under which this type of spectroscopy will be successful.

7.
J Chem Phys ; 143(7): 074114, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26298122

RESUMEN

We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment (4)He(1s2s (3)S) + HD(1s(2)) → (4)He(1s(2)) + HD(+)(1s) + e(-) [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.

8.
Opt Lett ; 39(15): 4502-5, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25078213

RESUMEN

We propose an alternative method to laser cooling. Our approach utilizes the extreme brightness of a supersonic atomic beam, and the adiabatic atomic coilgun to slow atoms in the beam or to bring them to rest. We show how internal-state optical pumping and stimulated optical transitions, combined with magnetic forces, can be used to cool the translational motion of atoms. This approach does not rely on momentum transfer from photons to atoms, as in laser cooling. We predict that our method can surpass laser cooling in terms of flux of ultracold atoms and phase-space density, with lower required laser power.

9.
Science ; 380(6640): 77-81, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37023184

RESUMEN

Feshbach resonances are fundamental to interparticle interactions and become particularly important in cold collisions with atoms, ions, and molecules. In this work, we present the detection of Feshbach resonances in a benchmark system for strongly interacting and highly anisotropic collisions: molecular hydrogen ions colliding with noble gas atoms. The collisions are launched by cold Penning ionization, which exclusively populates Feshbach resonances that span both short- and long-range parts of the interaction potential. We resolved all final molecular channels in a tomographic manner using ion-electron coincidence detection. We demonstrate the nonstatistical nature of the final-state distribution. By performing quantum scattering calculations on ab initio potential energy surfaces, we show that the isolation of the Feshbach resonance pathways reveals their distinctive fingerprints in the collision outcome.

10.
Rev Sci Instrum ; 93(1): 013202, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35104939

RESUMEN

We present a multichannel setup capable of generating high peak power tunable duration pulses. Our architecture is based on a configurable RLC circuit and allows generation of 1120 current pulses, with the variable duration spanning 14-212 µs with 1 µs resolution and the peak current reaching 500 A. We use silicon controlled rectifier based multiplexing to deliver current pulses to dedicated inductors that generate 0.8 T strong magnetic fields that create a moving magnetic trap for paramagnetic particles in a supersonic beam.

11.
Chemphyschem ; 17(22): 3581-3582, 2016 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-27805314
12.
Phys Chem Chem Phys ; 13(42): 18948-53, 2011 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-21897990

RESUMEN

The long standing goal of chemical physics is finding a convenient method to create slow and cold beams intense enough to observe chemical reactions in the temperature range of a few Kelvin. We present an extensive numerical analysis of our moving magnetic trap decelerator showing that a 3D confinement throughout the deceleration process enables deceleration of almost all paramagnetic particles within the original supersonic expansion to stopping velocities. We show that the phase space region containing the decelerating species is larger by two orders of magnitude as compared to other available deceleration methods.

13.
Nat Commun ; 12(1): 7249, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903758

RESUMEN

Asymmetric spectral line shapes are a hallmark of interference of a quasi-bound state with a continuum of states. Such line shapes are well known for multichannel systems, for example, in photoionization or Feshbach resonances in molecular scattering. On the other hand, in resonant single channel scattering, the signature of such interference may disappear due to the orthogonality of partial waves. Here, we show that probing the angular dependence of the cross section allows us to unveil asymmetric Fano profiles also in a single channel shape resonance. We observe a shift in the peak of the resonance profile in the elastic collisions between metastable helium and deuterium molecules with detection angle, in excellent agreement with theoretical predictions from full quantum scattering calculations. Using a model description for the partial wave interference, we can disentangle the resonant and background contributions and extract the relative phase responsible for the characteristic Fano-like profiles from our experimental measurements.

14.
Rev Sci Instrum ; 92(1): 015110, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33514262

RESUMEN

We present a new design for a pulsed supersonic-beam source, inspired by the Even-Lavie valve, which is about four times more energy efficient than its predecessor and can run at more than double the repetition rate without experiencing resonances. Its characteristics make it a better candidate as a source for cryogenic-related experiments as well as spectroscopy with rapidly pulsed lasers. The new design is also simpler to build and is more robust, making it accessible to a larger portion of the scientific community.

15.
Science ; 373(6559): 1105-1109, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34516841

RESUMEN

Angular momentum plays a central role in quantum mechanics, recurring in every length scale from the microscopic interactions of light and matter to the macroscopic behavior of superfluids. Vortex beams, carrying intrinsic orbital angular momentum (OAM), are now regularly generated with elementary particles such as photons and electrons. Thus far, the creation of a vortex beam of a nonelementary particle has never been demonstrated experimentally. We present vortex beams of atoms and molecules, formed by diffracting supersonic beams of helium atoms and dimers off transmission gratings. This method is general and could be applied to most atomic and molecular gases. Our results may open new frontiers in atomic physics, using the additional degree of freedom of OAM to probe collisions and alter fundamental interactions.

16.
Nat Chem ; 13(1): 94-98, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33257885

RESUMEN

Scattering resonances play a central role in collision processes in physics and chemistry. They help build an intuitive understanding of the collision dynamics due to the spatial localization of the scattering wavefunctions. For resonances that are localized in the reaction region, located at short separation behind the centrifugal barrier, sharp peaks in the reaction rates are the characteristic signature, observed recently with state-of-the-art experiments in low-energy collisions. If, however, the localization occurs outside of the reaction region, mostly the elastic scattering is modified. This may occur due to above-barrier resonances, the quantum analogue of classical orbiting. By probing both elastic and inelastic scattering of metastable helium with deuterium molecules in merged-beam experiments, we differentiate between the nature of quantum resonances-tunnelling resonances versus above-barrier resonances-and corroborate our findings by calculating the corresponding scattering wavefunctions.

17.
Nat Commun ; 11(1): 3553, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678097

RESUMEN

Observation of molecular dynamics with quantum state resolution is one of the major challenges in chemical physics. Complete characterization of collision dynamics leads to the microscopic understanding and unraveling of different quantum phenomena such as scattering resonances. Here we present an experimental approach for observing molecular dynamics involving neutral particles and ions that is capable of providing state-to-state mapping of the dynamics. We use Penning ionization reaction between argon and metastable helium to generate argon ion and ground state helium atom pairs at separation of several angstroms. The energy of an ejected electron carries the information about the initial electronic state of an ion. The coincidence detection of ionic products provides a state resolved description of the post-ionization ion-neutral dynamics. We demonstrate that correlation between the electron and ion energy spectra enables us to directly observe the spin-orbit excited Feshbach resonance state of HeAr+. We measure the lifetime of the quasi-bound HeAr+ A2 state and discuss possible applications of our method.

18.
Nat Commun ; 11(1): 999, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32081896

RESUMEN

Decay of bound states due to coupling with free particle states is a general phenomenon occurring at energy scales from MeV in nuclear physics to peV in ultracold atomic gases. Such a coupling gives rise to Fano-Feshbach resonances (FFR) that have become key to understanding and controlling interactions-in ultracold atomic gases, but also between quasiparticles, such as microcavity polaritons. Their energy positions were shown to follow quantum chaotic statistics. In contrast, their lifetimes have so far escaped a similarly comprehensive understanding. Here, we show that bound states, despite being resonantly coupled to a scattering state, become protected from decay whenever the relative phase is a multiple of π. We observe this phenomenon by measuring lifetimes spanning four orders of magnitude for FFR of spin-orbit excited molecular ions with merged beam and electrostatic trap experiments. Our results provide a blueprint for identifying naturally long-lived states in a decaying quantum system.

19.
Chem Rev ; 112(9): 4879-89, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22827566
20.
J Phys Chem Lett ; 10(4): 855-863, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30730751

RESUMEN

The quantum phenomena of electronic and nuclear resonances are associated with structures in measured cross sections. Such structures were recently reported in a cold chemistry experiment of ground-state hydrogen isotopologues (H2/HD) colliding with helium atoms in the excited triplet P-state (He(23P)) [Shagam et al. Nature Chem. 2015, 7, 921], but a theoretical explanation of their appearance was not given. This work presents a quantum explanation and simulation of this experiment, which are strictly based on ab initio calculations. We incorporate complex potential energy surfaces into adiabatic variational theory, thereby reducing the multidimensional scattering process to a series of uncoupled 1D scattering "gedanken experiments". Our theoretical result, which is in remarkable agreement with the experimental data, manifests that the structures in the observed reaction rate coefficient are due to the spatial arrangement of the excited He p-orbitals with respect to the interaction axis, consequently changing the system from a normal two-rotor model to a three-rotor one. This theoretical scheme can be applied to explain and predict cross sections or reaction rate coefficients for any resonance-related phenomenon.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA