Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105706, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309500

RESUMEN

Glioma stem cell/glioma-initiating cell (GIC) and their niches are considered responsible for the therapeutic resistance and recurrence of malignant glioma. To clarify the molecular mechanisms of GIC maintenance/differentiation, we performed a unique integrated proteogenomics utilizing GIC clones established from patient tumors having the potential to develop glioblastoma. After the integration and extraction of the transcriptomics/proteomics data, we found that chondroitin sulfate proteoglycan 4 (CSPG4) and its glycobiosynthetic enzymes were significantly upregulated in GICs. Glyco-quantitative PCR array revealed that chondroitin sulfate (CS) biosynthetic enzymes, such as xylosyltransferase 1 (XYLT1) and carbohydrate sulfotransferase 11, were significantly downregulated during serum-induced GIC differentiation. Simultaneously, the CS modification on CSPG4 was characteristically decreased during the differentiation and also downregulated by XYLT1 knockdown. Notably, the CS degradation on CSPG4 by ChondroitinaseABC treatment dramatically induced GIC differentiation, which was significantly inhibited by the addition of CS. GIC growth and differentiation ability were significantly suppressed by CSPG4 knockdown, suggesting that CS-CSPG4 is an important factor in GIC maintenance/differentiation. To understand the molecular function of CS-CSPG4, we analyzed its associating proteins in GICs and found that CSPG4, but not CS-CSPG4, interacts with integrin αV during GIC differentiation. This event sequentially upregulates integrin-extracellular signal-regulated kinase signaling, which can be inhibited by cyclic-RGD (Arg-Gly-Asp) integrin αV inhibitor. These results indicate that CS-CSPG4 regulates the GIC microenvironment for GIC maintenance/differentiation via the CS moiety, which controls integrin signaling. This study demonstrates a novel function of CS on CSPG4 as a niche factor, so-called "glyco-niche" for GICs, and suggests that CS-CSPG4 could be a potential target for malignant glioma.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato , Sulfatos de Condroitina , Glioma , Proteínas de la Membrana , Humanos , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Sulfatos de Condroitina/metabolismo , Glioma/metabolismo , Glioma/patología , Integrina alfaV , Proteínas de la Membrana/metabolismo , Microambiente Tumoral
2.
Clin Exp Nephrol ; 27(1): 89-95, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36209259

RESUMEN

BACKGROUND: ABO antigens expressed on the red blood cells (RBCs) are not identical to those expressed on the renal endothelial cells. The isohemagglutinin assay employing the RBCs is the gold standard for evaluating anti-ABO antibody (Ab) levels. However, it remains unclear whether the anti-ABO Abs detected by the isohemagglutinin assay after ABO-incompatible (ABOi) kidney transplantations (KTx) that are not associated with antibody-mediated rejection can bind to renal graft endothelial cells. METHODS: Ninety plasma samples were collected from patients with stable graft function after ABO-compatible (ABOc) or ABOi KTx. Anti-ABO Ab titers were examined by both the isohemagglutinin assay and the CD31-ABO microarray, which was developed as a mimic of the ABO antigens expressed on the renal endothelial cells. RESULTS: The antibody titers detected by the isohemagglutinin assay and the CD31-ABO microarray after the ABOc KTx relatively correlated with each other. However, the CD31-ABO microarray results showed low antibody levels against donor blood group antigens after ABOi KTx and did not correlate with the isohemagglutinin assay. In contrast, the antibody levels against non-donor blood group antigens after ABOi KTx were comparable to those after the ABOc KTx. Fourteen patients received graft biopsies, and no antibody-mediated rejection was observed in ABOi KTx recipients, except for two patients who had anti-donor-HLA Abs. CONCLUSION: The present study suggested that the anti-ABO Abs detected by the isohemagglutinin assay after ABOi KTx with stable graft function were hyporeactive to the ABO antigen of graft renal endothelial cells.


Asunto(s)
Trasplante de Riñón , Humanos , Trasplante de Riñón/efectos adversos , Trasplante de Riñón/métodos , Hemaglutininas , Células Endoteliales , Donadores Vivos , Sistema del Grupo Sanguíneo ABO , Anticuerpos , Rechazo de Injerto , Supervivencia de Injerto
3.
Anal Chem ; 94(5): 2476-2484, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35044763

RESUMEN

Wisteria floribunda agglutinin (WFA)-reactive ceruloplasmin (CP) is a candidate marker for ovarian clear cell carcinoma (CCC) reported in our previous paper. Herein, a new measurement system was developed to investigate its potential as a serum marker for CCC. Site-specific glycome analysis using liquid chromatography/mass spectrometry showed that WFA-CP from CCC binds to WFA via the GalNAcß1,4GlcNAc (LDN) structure. We used mutant recombinant WFA (rWFA), which has a high specificity to the LDN structure, instead of native WFA, to increase the specificity of the serum sample measurement. To improve the sensitivity, we used a surface plasmon field-enhanced fluorescence spectroscopy immunoassay system, which is approximately 100 times more sensitive than the conventional sandwich enzyme-linked immunosorbent assay system. With these two improvements, the specificity and sensitivity of the serum rWFA-CP measurement were dramatically improved, clearly distinguishing CCC from endometrioma, from which CCC originates. This rWFA-CP assay can be used clinically for the serodiagnosis of early-stage CCC, which is difficult to detect with existing serum markers.


Asunto(s)
Carcinoma , Endometriosis , Antígenos de Neoplasias , Biomarcadores , Ceruloplasmina/metabolismo , Endometriosis/diagnóstico , Humanos , Cirrosis Hepática/diagnóstico , Lectinas de Plantas/química , Receptores N-Acetilglucosamina/metabolismo
4.
Neurochem Res ; 47(9): 2793-2804, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35753011

RESUMEN

α1,3-Fucosyltransferase 9 (Fut9) is responsible for the synthesis of Lewis X [LeX, Galß1-4(Fucα1-3)GlcNAc] carbohydrate epitope, a marker for pluripotent or multipotent tissue-specific stem cells. Although Fut9-deficient mice show anxiety-related behaviors, structural and cellular abnormalities in the brain remain to be investigated. In this study, using in situ hybridization and immunohistochemical techniques in combination, we clarified the spatiotemporal expression of Fut9, together with LeX, in the brain and retina. We found that Fut9-expressing cells are positive for Ctip2, a marker of neurons residing in layer V/VI, and TLE4, a marker of corticothalamic projection neurons (CThPNs) in layer VI, of the cortex. A birthdating analysis using 5-ethynyl-2'-deoxyuridine at embryonic day (E)11.5, 5-bromo-2'-deoxyuridine at E12.5, and in utero electroporation of a GFP expression plasmid at E14.5 revealed a reduction in the percentage of neurons produced at E11.5 in layer VI/subplate of the cortex and in the ganglion cell layer of the retina in P0 Fut9-/- mice. Furthermore, this reduction in layer VI/subplate neurons persisted into adulthood, leading to a reduction in the number of Ctip2strong/Satb2- excitatory neurons in layer V/VI of the adult Fut9-/- cortex. These results suggest that Fut9 plays significant roles in the differentiation, migration, and maturation of neural precursor cells in the cortex and retina.


Asunto(s)
Antígeno Lewis X , Células-Madre Neurales , Animales , Corteza Cerebral/metabolismo , Ratones , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Retina/metabolismo
5.
BMC Gastroenterol ; 22(1): 270, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35641912

RESUMEN

BACKGROUND: Serum hepatitis B surface antigen (HBsAg) is a component of both hepatitis B virus (HBV) virions and non-infectious subviral particles (SVPs). Recently, O-glycosylation of the PreS2 domain of middle HBsAg protein has been identified as a distinct characteristic of genotype C HBV virions versus SVPs. This study aimed to evaluate serum O-glycosylated HBsAg levels in patients with chronic hepatitis B (CHB) treated with nucleos(t)ide analogs (NAs). METHODS: Forty-seven treatment-naïve patients with genotype C CHB were retrospectively enrolled. Serum O-glycosylated HBsAg levels at baseline and after 48 weeks of NA therapy were quantified by immunoassay using a monoclonal antibody against the O-glycosylated PreS2 domain of middle HBsAg, and their correlations with conventional HBV marker levels were analyzed. RESULTS: At baseline, the serum O-glycosylated HBsAg levels were significantly correlated with the HBV DNA (P = 0.004), HBsAg (P = 0.005), and hepatitis B-core related antigen (HBcrAg, P = 0.001) levels. Both HBV DNA and O-glycosylated HBsAg levels were decreased after 48 weeks of NA therapy. The significant correlation of the O-glycosylated HBsAg level with the HBsAg or HBcrAg level was lost in patients who achieved undetectable HBV DNA (HBsAg, P = 0.429; HBcrAg, P = 0.065). Immunoprecipitation assays demonstrated that HBV DNA and RNA were detected in the O-glycosylated HBsAg-binding serum fraction, and the proportion of HBV RNA increased during NA therapy (P = 0.048). CONCLUSION: Serum O-glycosylated HBsAg levels change during NA therapy and may reflect combined levels of serum HBV DNA and RNA virions. An O-glycosylated HBsAg-based immunoassay may provide a novel means to monitor viral kinetics during NA therapy.


Asunto(s)
Hepatitis B Crónica , ADN Viral , Glicosilación , Antígenos de Superficie de la Hepatitis B , Hepatitis B Crónica/tratamiento farmacológico , Humanos , ARN , Estudios Retrospectivos
6.
Transpl Int ; 35: 10248, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401036

RESUMEN

Isohemagglutinin assays employing red blood cells (RBCs) are the most common assays used to measure antibody titer in ABO-incompatible kidney transplantation (ABOi KTx). However, ABO antigens expressed on RBCs are not identical to those of kidney and antibody titers do not always correlate with clinical outcome. We previously reported that CD31 was the main protein linked to ABO antigens on kidney endothelial cells (KECs), which was different from those on RBCs. We developed a new method to measure antibody titer using a microarray of recombinant CD31 (rCD31) linked to ABO antigens (CD31-ABO microarray). Mass spectrometry analysis suggested that rCD31 and native CD31 purified from human kidney had similar ABO glycan. To confirm clinical use of CD31-ABO microarray, a total of 252 plasma samples including volunteers, hemodialysis patients, and transplant recipients were examined. In transplant recipients, any initial IgG or IgM antibody intensity >30,000 against the donor blood type in the CD31-ABO microarray showed higher sensitivity, specificity, positive predictive value, and negative predictive value of AABMR, compared to isohemagglutinin assays. Use of a CD31-ABO microarray to determine antibody titer specifically against ABO antigens expressed on KECs will contribute to precisely predicting AABMR or preventing over immunosuppression following ABOi KTx.


Asunto(s)
Trasplante de Riñón , Sistema del Grupo Sanguíneo ABO , Anticuerpos , Incompatibilidad de Grupos Sanguíneos , Carbohidratos , Células Endoteliales , Rechazo de Injerto , Humanos , Trasplante de Riñón/métodos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta
7.
Glycobiology ; 31(8): 947-958, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-33909026

RESUMEN

Mucin-type O-glycosylation is initiated by the polypeptide: N-acetylgalactosaminyltransferase (ppGalNAc-T) family of enzymes, which consists of 20 members in humans. Among them, unlike other ppGalNAc-Ts located in Golgi apparatus, ppGalNAc-T18 distributes primarily in the endoplasmic reticulum (ER) and non-catalytically regulates ER homeostasis and O-glycosylation. Here, we report the mechanism for ppGalNAc-T18 ER localization and the function of each structural domain of ppGalNAc-T18. By using ppGalNAc-T18 truncation mutants, we revealed that the luminal stem region and catalytic domain of ppGalNAc-T18 are essential for ER localization, whereas the lectin domain and N-glycosylation of ppGalNAc-T18 are not required. In the absence of the luminal region (i.e., stem region, catalytic and lectin domains), the conserved Golgi retention motif RKTK within the cytoplasmic tail combined with the transmembrane domain ensure ER export and Golgi retention, as observed for other Golgi resident ppGalNAc-Ts. Results from coimmunoprecipitation assays showed that the luminal region interacts with ER resident proteins UGGT1, PLOD3 and LPCAT1. Furthermore, flow cytometry analysis showed that the entire luminal region is required for the non-catalytic O-GalNAc glycosylation activity of ppGalNAc-T18. The findings reveal a novel subcellular localization mechanism of ppGalNAc-Ts and provide a foundation to further characterize the function of ppGalNAc-T18 in the ER.


Asunto(s)
N-Acetilgalactosaminiltransferasas , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Retículo Endoplásmico/metabolismo , Glucosiltransferasas , Glicosilación , Aparato de Golgi/metabolismo , Humanos , N-Acetilgalactosaminiltransferasas/metabolismo , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa , Polipéptido N-Acetilgalactosaminiltransferasa
8.
Glycobiology ; 31(10): 1268-1278, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34192302

RESUMEN

The extent of liver fibrosis predicts prognosis and is important for determining treatment strategies for chronic hepatitis. During the fibrosis progression, serum levels of Mac2 binding protein (M2BP) increase and the N-glycan structure changes to enable binding to Wisteria floribunda agglutinin (WFA) lectin. As a novel diagnostic marker, glycosylation isomer of M2BP (M2BPGi) has been developed. However, its glycan structures recognized by WFA are unclear. In this study, we analyzed site-specific N-glycan structures of serum M2BP using Glyco-RIDGE (Glycan heterogeneity-based Relational IDentification of Glycopeptide signals on Elution profile) method. We evaluated five sample types: (1) M2BP immunoprecipitated from normal healthy sera (NHS-IP(+)), (2) M2BP immunoprecipitated from sera of patients with liver cirrhosis (stage 4; F4-IP(+)), (3) M2BP captured with WFA from serum of patients with liver cirrhosis (stage 4; F4-WFA(+)), (4) recombinant M2BP produced by HEK293 cells (rM2BP) and (5) WFA-captured rM2BP (rM2BP-WFA(+)). In NHS-IP(+) M2BP, bi-antennary N-glycan was the main structure, and LacNAc extended to its branches. In F4-IP(+) M2BP, many branched structures, including tri-antennary and tetra-antennary N-glycans, were found. F4-WFA(+) showed a remarkable increase in branched structures relative to the quantity before enrichment. In recombinant M2BP, both no sialylated-LacdiNAc and -branched LacNAc structures were emerged. The LacdiNAc structure was not found in serum M2BP. Glycosidase-assisted HISCL assays suggest that reactivity with WFA of both serum and recombinant M2BP depends on unsialylated and branched LacNAc and in part of recombinant depends on LacdiNAc. On M2BPGi, the highly branched LacNAc, probably dense cluster of LacNAc, would be recognized by WFA.


Asunto(s)
Antígenos de Neoplasias/química , Biomarcadores de Tumor/química , Cirrosis Hepática/sangre , Lectinas de Plantas/química , Polisacáridos/química , Receptores N-Acetilglucosamina/química , Antígenos de Neoplasias/sangre , Biomarcadores de Tumor/sangre , Células HEK293 , Voluntarios Sanos , Humanos , Lectinas de Plantas/sangre , Polisacáridos/sangre , Análisis por Matrices de Proteínas , Receptores N-Acetilglucosamina/sangre , Proteínas Recombinantes/sangre , Proteínas Recombinantes/química
9.
Hum Mol Genet ; 28(24): 4053-4066, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31600785

RESUMEN

Peters plus syndrome (MIM #261540 PTRPLS), characterized by defects in eye development, prominent forehead, hypertelorism, short stature and brachydactyly, is caused by mutations in the ß3-glucosyltransferase (B3GLCT) gene. Protein O-fucosyltransferase 2 (POFUT2) and B3GLCT work sequentially to add an O-linked glucose ß1-3fucose disaccharide to properly folded thrombospondin type 1 repeats (TSRs). Forty-nine proteins are predicted to be modified by POFUT2, and nearly half are members of the ADAMTS superfamily. Previous studies suggested that O-linked fucose is essential for folding and secretion of POFUT2-modified proteins and that B3GLCT-mediated extension to the disaccharide is essential for only a subset of targets. To test this hypothesis and gain insight into the origin of PTRPLS developmental defects, we developed and characterized two mouse B3glct knockout alleles. Using these models, we tested the role of B3GLCT in enabling function of ADAMTS9 and ADAMTS20, two highly conserved targets whose functions are well characterized in mouse development. The mouse B3glct mutants developed craniofacial and skeletal abnormalities comparable to PTRPLS. In addition, we observed highly penetrant hydrocephalus, white spotting and soft tissue syndactyly. We provide strong genetic and biochemical evidence that hydrocephalus and white spotting in B3glct mutants resulted from loss of ADAMTS20, eye abnormalities from partial reduction of ADAMTS9 and cleft palate from loss of ADAMTS20 and partially reduced ADAMTS9 function. Combined, these results provide compelling evidence that ADAMTS9 and ADAMTS20 were differentially sensitive to B3GLCT inactivation and suggest that the developmental defects in PTRPLS result from disruption of a subset of highly sensitive POFUT2/B3GLCT targets such as ADAMTS20.


Asunto(s)
Proteínas ADAMTS/metabolismo , Proteína ADAMTS9/metabolismo , Labio Leporino/metabolismo , Córnea/anomalías , Glicosiltransferasas/deficiencia , Trastornos del Crecimiento/metabolismo , Deformidades Congénitas de las Extremidades/metabolismo , Alelos , Animales , Labio Leporino/enzimología , Labio Leporino/genética , Córnea/enzimología , Córnea/metabolismo , Modelos Animales de Enfermedad , Femenino , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Trastornos del Crecimiento/enzimología , Trastornos del Crecimiento/genética , Deformidades Congénitas de las Extremidades/enzimología , Deformidades Congénitas de las Extremidades/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Organogénesis/genética
10.
J Proteome Res ; 19(6): 2516-2524, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32338917

RESUMEN

Extracellular vesicles such as exosomes are generally covered with an array of glycans, which are controlled by the host-cell glyco-synthetic machinery, similar to secreted and membrane glycoproteins. Several exosome subpopulations classified by their tetraspanin expression have been investigated in the context of diseases. However, a comparative analysis of their glycomics has never been attempted. Herein, we report a method for the comparative glycomic analysis of exosome subpopulations among pancreatic cancer cell lines. Glycomic profiles were obtained for extracellular vesicles, secreted glycoproteins, and membrane glycoproteins from eight cell lines. Statistical analyses revealed high populations of PHA-L-binding proteins in the vesicles. The surfaces of extracellular vesicles were labeled with Cy3 and captured by magnetic beads with antibodies against tetraspanins (CD9, CD63, and CD81). The coprecipitated vesicles were lysed and subjected to a lectin microarray analysis. A hierarchical clustering analysis using 19 glycomic profiles confirmed that most subpopulations, except CD81-positive exosomes, could be distinguished according to the host-cell species. Principal component analysis and subsequent lectin-affinity capturing of intact exosomes highlighted that CD81-positive exosomes preferentially expressed not PHA-L- but LEL-binding proteins on their surfaces. These data suggested that exosomal glycomics depended on the host-cell type and subpopulation.


Asunto(s)
Exosomas , Vesículas Extracelulares , Neoplasias Pancreáticas , Línea Celular , Glicómica , Humanos
11.
J Biol Chem ; 294(18): 7433-7444, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30898876

RESUMEN

The type-I LacdiNAc (LDN; GalNAcß1-3GlcNAc) has rarely been observed in mammalian cells except in the O-glycan of α-dystroglycan, in contrast to type-II LDN structures (GalNAcß1-4GlcNAc) in N- and O-glycans that are present in many mammalian glycoproteins, such as pituitary and hypothalamic hormones. Although a ß1,3-N-acetylgalactosaminyltransferase 2 (B3GALNT2; type-I LDN synthase) has been cloned, the function of type-I LDN in mammalian cells is still unclear, as its carrier protein(s) has not been identified. In this study, using HeLa cells, we demonstrate that inhibition of Golgi-resident glycosyltransferase increases the abundance of B3GALNT2-synthesized type-I LDN structures, recognized by Wisteria floribunda agglutinin (WFA). Using isotope-coded glycosylation site-specific tagging (IGOT)-LC/MS analysis of Lec8 Chinese hamster cells lacking galactosylation and of cells transfected with the B3GALNT2 gene, we identified the glycoproteins that carry B3GALNT2-generated type-I LDN in their N-glycans. Our results further revealed that LDN presence on low-density lipoprotein receptor-related protein 1 and nicastrin depends on B3GALNT2, indicating the occurrence of type-I LDN in vivo in mammalian cells. Our analysis also uncovered that most of the identified glycoproteins localize to intracellular organelles, particularly to the endoplasmic reticulum. Whereas B4GALNT3 and B4GALNT4 synthesized LDN on extracellular glycoproteins, B3GALNT2 primarily transferred LDN to intracellular glycoproteins, thereby clearly delineating proteins that carry type-I or type-II LDNs. Taken together, our results indicate the presence of mammalian glycoproteins carrying type-I LDN on N-glycans and suggest that type-I and type-II LDNs have different roles in vivo.


Asunto(s)
Glicoproteínas/química , N-Acetilgalactosaminiltransferasas/metabolismo , Animales , Cricetinae , Glicoproteínas/biosíntesis , Glicosilación , Células HeLa , Humanos , Orgánulos/metabolismo , Lectinas de Plantas/metabolismo , Receptores N-Acetilglucosamina/metabolismo
12.
Biochem Biophys Res Commun ; 523(4): 1007-1013, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31973821

RESUMEN

The glomerular filtration barrier is composed of podocytes, glomerular basement membrane, and endothelial cells. Disruption of these structures causes several glomerular injuries, such as focal segmental glomerulosclerosis (FSGS). The surface of podocyte apical membranes is coated by negatively charged sialic acids on core 1-derived mucin-type O-glycans. Here, we aimed to investigate the physiological role of core 1-derived O-glycans in the podocytes using adult mice lacking podocyte-specific core 1-derived O-glycans (iPod-Cos). iPod-Cos mice exhibited early and transient proteinuria with foot process effacements and developed typical FSGS-like disease symptoms. To identify the key molecules responsible for the FSGS-like phenotype, we focused on podocalyxin and podoplanin, which possess mucin-type O-glycans. Expression and localization of podocalyxin did not change in iPod-Cos glomeruli. Besides, western blot analysis revealed significantly lower levels of intact podocalyxin in isolated glomeruli of iPod-Cos mice, and high levels of processed forms in iPod-Cos glomeruli, as compared to that in control glomeruli. Conversely, podoplanin mRNA, and protein levels were lower in iPod-Cos mice than in control mice. These results demonstrated that core 1-derived O-glycan on podocytes is required for normal glomerular filtration and may contribute to the stable expression of podocalyxin and podoplanin.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria/etiología , Podocitos/metabolismo , Polisacáridos/metabolismo , Proteinuria/complicaciones , Animales , Línea Celular , Galactosiltransferasas/metabolismo , Glicoproteínas/metabolismo , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Glomérulos Renales/ultraestructura , Ratones Noqueados , Mucina-1/metabolismo , Proteolisis
13.
Hepatol Res ; 50(10): 1128-1140, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32738016

RESUMEN

AIM: Hepatitis B virus (HBV) relies on glycosylation for crucial functions, such as entry into host cells, proteolytic processing and protein trafficking. The aim of this study was to identify candidate molecules for the development of novel antiviral agents against HBV using an siRNA screening system targeting the host glycosylation pathway. METHODS: HepG2.2.15.7 cells that consistently produce HBV were employed for our in vitro study. We investigated the effects of siRNAs that target 88 different host glycogenes on hepatitis B surface antigen (HBsAg) and HBV DNA secretion using the siRNA screening system. RESULTS: We identified four glycogenes that reduced HBsAg and/or HBV DNA secretion; however, the observed results for two of them may be due to siRNA off-target effects. Knocking down ST8SIA3, a member of the sialyltransferase family, significantly reduced both HBsAg and HBV DNA secretion. Knocking down GALNT7, which transfers N-acetylgalactosamine to initiate O-linked glycosylation in the Golgi apparatus, also significantly reduced both HBsAg and HBV DNA levels. CONCLUSIONS: These results showed that knocking down the ST8SIA3 and GALNT7 glycogenes inhibited HBsAg and HBV DNA secretion in HepG2.2.15.7 cells, indicating that the host glycosylation pathway is important for the HBV life cycle and could be a potential target for the development of novel anti-HBV agents.

14.
J Allergy Clin Immunol ; 144(3): 698-709.e9, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31125592

RESUMEN

BACKGROUND: One of the pathognomonic features of asthma is epithelial hyperproduction of mucus, which is composed of a series of glycoproteins; however, it remains unclear how glycosylation is induced in lung epithelial cells from asthmatic patients and how glycan residues play a role in the pathogenesis of asthma. OBJECTIVE: The objective of this study was to explore comprehensive epithelial glycosylation status induced by allergic inflammation and reveal its possible role in the pathogenesis of asthma. METHODS: We evaluated the glycosylation status of lung epithelium using a lectin microarray. We next searched for molecular mechanisms underlying epithelial glycosylation. We also examined whether epithelial glycosylation is involved in induction of allergic inflammation. RESULTS: On allergen inhalation, lung epithelial cells were heavily α(1,2)fucosylated by fucosyltransferase 2 (Fut2), which was induced by the IL-13-signal transducer and activator of transcription 6 pathway. Importantly, Fut2-deficient (Fut2-/-) mice, which lacked lung epithelial fucosylation, showed significantly attenuated eosinophilic inflammation and airway hyperresponsiveness in house dust mite (HDM)-induced asthma models. Proteome analyses and immunostaining of the HDM-challenged lung identified that complement C3 was accumulated in fucosylated areas. Indeed, Fut2-/- mice showed significantly reduced levels of C3a and impaired accumulation of C3a receptor-expressing monocyte-derived dendritic cells in the lung on HDM challenge. CONCLUSION: Fut2 induces epithelial fucosylation and exacerbates airway inflammation in asthmatic patients in part through C3a production and monocyte-derived dendritic cell accumulation in the lung.


Asunto(s)
Asma/inmunología , Células Epiteliales/inmunología , Fucosiltransferasas/inmunología , Pulmón/inmunología , Mucosa Respiratoria/inmunología , Alérgenos/inmunología , Animales , Complemento C3/inmunología , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Eosinofilia Pulmonar/inmunología , Pyroglyphidae/inmunología , Células Th17/inmunología , Células Th2/inmunología , Galactósido 2-alfa-L-Fucosiltransferasa
15.
J Proteome Res ; 17(12): 4097-4112, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30359034

RESUMEN

Glycoproteomics is an important recent advance in the field of glycoscience. In glycomics, glycan structures are comprehensively analyzed after glycans are released from glycoproteins. However, a major limitation of glycomics is the lack of insight into glycoprotein functions. The Biology/Disease-driven Human Proteome Project has a particular focus on biological and medical applications. Glycoproteomics technologies aimed at obtaining a comprehensive understanding of intact glycoproteins, i.e., the kind of glycan structures that are attached to particular amino acids and proteins, have been developed. This Review focuses on the recent progress of the technologies and their applications. First, the methods for large-scale identification of both N- and O-glycosylated proteins are summarized. Next, the progress of analytical methods for intact glycopeptides is outlined. MS/MS-based methods were developed for improving the sensitivity and speed of the mass spectrometer, in parallel with the software for complex spectrum assignment. In addition, a unique approach to identify intact glycopeptides using MS1-based accurate masses is introduced. Finally, as an advance of glycomics, two approaches to provide the spatial distribution of glycans in cells are described, i.e., MS imaging and lectin microarray. These methods allow rapid glycomic profiling of different types of biological samples and thus facilitate glycoproteomics.


Asunto(s)
Glicoproteínas/análisis , Proteómica/tendencias , Línea Celular , Glicómica/métodos , Glicosilación , Humanos , Polisacáridos/análisis , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos
16.
Anal Chem ; 90(17): 10196-10203, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30074767

RESUMEN

Hepatitis B virus (HBV) is a double-stranded DNA virus composed of three types of viral particles. The virions are called Dane particles and the others are noninfectious subviral particles (SVPs). In blood, SVPs are detected in abundance, about 1000-10000 fold higher than Dane particles. Dane particles are hazardous because of their strong infectivity, unlike SVPs. Dane particles are covered with an envelope of glycoprotein called HBV surface antigen (HBsAg). HBsAg glycosylation is involved in viral particle formation and secretion. In this study, we established a novel and highly sensitive method for viral glycan profiling of HBsAg using small aliquots of patient serum. Our lectin microarray system could sensitively profile the glycans exposed on HBV while retaining the intact viral particle structure under nonreducing conditions. Several typical lectins were chosen from the lectin microarray results. Specifically, jacalin, which recognizes O-glycan, showed specific and strong reactivity to the M-HBsAg required for Dane particle secretion. Employing the lectin-fractionation method using jacalin, HBV particles were fractionated into jacalin-bound and unbound fractions from patient serum. We measured HBsAg titer and viral DNA load in each fraction using clinical tests. Interestingly, the jacalin-bound fraction contained a major fraction of the HBV viral DNA load. Thus, in this study we have presented a glycan profiling method for HBsAg on the intact HBV particle and an easy and simple method to enrich Dane particles from patient serum by jacalin fractionation.


Asunto(s)
Virus de la Hepatitis B/metabolismo , Polisacáridos/análisis , Virión/metabolismo , ADN Viral/genética , Hepatitis B/sangre , Hepatitis B/virología , Virus de la Hepatitis B/genética , Ensayos Analíticos de Alto Rendimiento , Humanos , Lectinas de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
Biochem Biophys Res Commun ; 495(2): 2017-2023, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29247646

RESUMEN

The core 1 ß1,3-galactosyltransferase-specific molecular chaperon (Cosmc) is essential for the synthesis of the core 1 structure of mucin-type O-glycans. To clarify the physiological role of core 1-derived O-glycans in macrophages, we exploited the LysM-Cre transgene to generate a conditional Cosmc mutant allele (conditional Cosmc knockout; cKO) in myeloid cells. cKO mice developed normally with no gross phenotypic abnormalities or abnormal peripheral blood counts. Resident peritoneal macrophages (rpMacs) of cKO mice exhibited impaired engulfment of apoptotic cells but showed normal macrophage differentiation and counts. T-cell immunoglobulin and mucin domain-containing molecule 4 (Tim4) is a phosphatidylserine (PS) receptor expressed on rpMacs and possesses a heavily O-glycosylated domain. Tim4 tethers apoptotic cells through PS binding. Expression of the Tim4 transcript was unchanged in cKO rpMacs, whereas flow cytometric, Western and dot blot analyses revealed that Tim4 protein expression in cKO rpMacs was significantly lower than that in wild-type (WT) rpMacs. Moreover, the expression levels of other efferocytosis-related molecules, Mertk, Itgav and Itgb3, were normal in rpMacs. In addition, hypoglycosylated Tim4-FLAG fusion protein sufficiently recognized PS. These results demonstrated that core 1-derived O-glycan is required for Tim4-dependent normal efferocytosis and may contribute to the stable expression of the Tim4 glycoprotein.


Asunto(s)
Apoptosis/fisiología , Citofagocitosis/fisiología , Macrófagos/citología , Macrófagos/metabolismo , Chaperonas Moleculares/metabolismo , Peritoneo/citología , Peritoneo/metabolismo , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
19.
Expert Rev Proteomics ; 15(2): 183-190, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29265940

RESUMEN

INTRODUCTION: Serum proteins are generally glycosylated and solubilized, and are thus present as glycoproteins. The glycan structure of glycoproteins reflects cell differentiation status; glycan structures generated by diseased cells are distinguishable from those produced by healthy cells. Proteins may therefore serve as markers of tissues that secrete them. Several strategies for the identification of novel serum biomarkers using a combination of glycoscience-based technologies have been recently proposed. The selection of lectins for use as probes for identification of altered glycan structures represents a critical step. Areas covered: This review describes the identification of Wisteria floribunda agglutinin (WFA) as a probe that recognizes the altered glycan structure of glycoproteins secreted by diseased cells. WFA may be employed as a probe for several diseases, e.g., liver fibrosis, liver cirrhosis, prostate cancer, ovarian cancer, and IgA nephropathy. The advantage of employing WFA as a serum biomarker probe is that only very small amounts of WFA-positive glycoproteins are present in serum; therefore, WFA background in serum is very low. Expert commentary: Based on the findings to date, several WFA-positive serum biomarkers may be measured without pre-purification of target glycoproteins, indicating their utility as serum biomarkers in patients with various diseases.


Asunto(s)
Glomerulonefritis por IGA/sangre , Cirrosis Hepática/sangre , Lectinas de Plantas/inmunología , Receptores N-Acetilglucosamina/inmunología , Biomarcadores/sangre , Glicómica/métodos , Humanos
20.
Nucleic Acids Res ; 44(D1): D1237-42, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26476458

RESUMEN

Glycans are known as the third major class of biopolymers, next to DNA and proteins. They cover the surfaces of many cells, serving as the 'face' of cells, whereby other biomolecules and viruses interact. The structure of glycans, however, differs greatly from DNA and proteins in that they are branched, as opposed to linear sequences of amino acids or nucleotides. Therefore, the storage of glycan information in databases, let alone their curation, has been a difficult problem. This has caused many duplicated efforts when integration is attempted between different databases, making an international repository for glycan structures, where unique accession numbers are assigned to every identified glycan structure, necessary. As such, an international team of developers and glycobiologists have collaborated to develop this repository, called GlyTouCan and is available at http://glytoucan.org/, to provide a centralized resource for depositing glycan structures, compositions and topologies, and to retrieve accession numbers for each of these registered entries. This will thus enable researchers to reference glycan structures simply by accession number, as opposed to by chemical structure, which has been a burden to integrate glycomics databases in the past.


Asunto(s)
Bases de Datos de Compuestos Químicos , Polisacáridos/química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA