Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(11): 7480-7486, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38446414

RESUMEN

In this work, a novel π-extended thio[7]helicene scaffold was synthesized, where the α-position of the thiophene unit could be functionalized with bulky phenoxy radicals after considerable synthetic attempts. This open-shell helical diradical, ET7H-R, possesses high stability in the air, nontrivial π conjugation, persistent chirality, and a high diradical character (y0 of 0.998). The key feature is a predominant through-space spin-spin coupling (TSC) between two radicals at the helical terminals. Variable-temperature continuous-wave electron spin resonance (cw-ESR) and superconducting quantum interference device (SQUID) magnetometry in the solid state reveal a singlet ground state with a nearly degenerate triplet state of ET7H-R. These results highlight the significance of a stable helical diradicaloid as a promising platform for investigating intramolecular TSCs.

2.
J Am Chem Soc ; 146(8): 5195-5203, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38275287

RESUMEN

Single-molecule localization microscopy (SMLM) is a powerful technique to achieve super-resolution imaging beyond the diffraction limit. Although various types of blinking fluorophores are currently considered for SMLM, intrinsic blinking fluorophores remain rare at the single-molecule level. Here, we report the synthesis of nanographene-based intrinsic burst-blinking fluorophores for highly versatile SMLM. We image amyloid fibrils in air and in various pH solutions without any additive and lysosome dynamics in live mammalian cells under physiological conditions. In addition, the single-molecule labeling of nascent proteins in primary sensory neurons was achieved with azide-functionalized nanographenes via click chemistry. SMLM imaging reveals higher local translation at axonal branching with unprecedented detail, while the size of translation foci remained similar throughout the entire network. These various results demonstrate the potential of nanographene-based fluorophores to drastically expand the applicability of super-resolution imaging.


Asunto(s)
Parpadeo , Colorantes Fluorescentes , Animales , Microscopía Fluorescente/métodos , Colorantes Fluorescentes/química , Imagen Individual de Molécula/métodos , Lisosomas/metabolismo , Mamíferos/metabolismo
3.
Angew Chem Int Ed Engl ; 63(15): e202400172, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38345140

RESUMEN

A negatively curved aza-nanographene (NG) containing two octagons was synthesized by a regioselective and stepwise cyclodehydrogenation procedure, in which a double aza[7]helicene was simultaneously formed as an intermediate. Their saddle-shaped structures with negative curvature were unambiguously confirmed by X-ray crystallography, thereby enabling the exploration of the structure-property relationship by photophysical, electrochemical and conformational studies. Moreover, the assembly of the octagon-embedded aza-NG with fullerenes was probed by fluorescence spectral titration, with record-high binding constants (Ka=9.5×103 M-1 with C60, Ka=3.7×104 M-1 with C70) found among reported negatively curved polycyclic aromatic compounds. The tight association of aza-NG with C60 was further elucidated by X-ray diffraction analysis of their co-crystal, which showed the formation of a 1 : 1 complex with substantial concave-convex interactions.

4.
Adv Sci (Weinh) ; 11(18): e2309131, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38430537

RESUMEN

Photoacoustic imaging (PAI)-guided photothermal therapy (PTT) in the second near-infrared (NIR-II, 1000-1700 nm) window has been attracting attention as a promising cancer theranostic platform. Here, it is reported that the π-extended porphyrins fused with one or two nanographene units (NGP-1 and NGP-2) can serve as a new class of NIR-responsive organic agents, displaying absorption extending to ≈1000 and ≈1400 nm in the NIR-I and NIR-II windows, respectively. NGP-1 and NGP-2 are dispersed in water through encapsulation into self-assembled nanoparticles (NPs), achieving high photothermal conversion efficiency of 60% and 69%, respectively, under 808 and 1064 nm laser irradiation. Moreover, the NIR-II-active NGP-2-NPs demonstrated promising photoacoustic responses, along with high photostability and biocompatibility, enabling PAI and efficient NIR-II PTT of cancer in vivo.


Asunto(s)
Técnicas Fotoacústicas , Porfirinas , Nanomedicina Teranóstica , Porfirinas/química , Nanomedicina Teranóstica/métodos , Técnicas Fotoacústicas/métodos , Ratones , Animales , Nanopartículas/química , Nanopartículas/uso terapéutico , Grafito/química , Humanos , Rayos Infrarrojos , Modelos Animales de Enfermedad , Terapia Fototérmica/métodos , Línea Celular Tumoral , Neoplasias/terapia , Fototerapia/métodos
5.
Precis Chem ; 2(2): 81-87, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38425747

RESUMEN

On-surface synthesis has emerged as a powerful strategy to fabricate unprecedented forms of atomically precise graphene nanoribbons (GNRs). However, the on-surface synthesis of zigzag GNRs (ZGNR) has met with only limited success. Herein, we report the synthesis and on-surface reactions of 2,7-dibromo-9,9'-bianthryl as the precursor toward π-extended ZGNRs. Characterization by scanning tunneling microscopy and high-resolution noncontact atomic force microscopy clearly demonstrated the formation of anthracene-fused ZGNRs. Unique skeletal rearrangements were also observed, which could be explained by intramolecular Diels-Alder cycloaddition. Theoretical calculations of the electronic properties of the anthracene-fused ZGNRs revealed spin-polarized edge-states and a narrow bandgap of 0.20 eV.

6.
Nat Commun ; 15(1): 1910, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429274

RESUMEN

On-surface synthesis relies on carefully designed molecular precursors that are thermally activated to afford desired, covalently coupled architectures. Here, we study the intramolecular reactions of vinyl groups in a poly-para-phenylene-based model system and provide a comprehensive description of the reaction steps taking place on the Au(111) surface under ultrahigh vacuum conditions. We find that vinyl groups successfully cyclize with the phenylene rings in the ortho positions, forming a dimethyl-dihydroindenofluorene as the repeating unit, which can be further dehydrogenated to a dimethylene-dihydroindenofluorene structure. Interestingly, the obtained polymer can be transformed cleanly into thermodynamically stable polybenzo[k]tetraphene at higher temperature, involving a previously elusive pentagon-to-hexagon transformation via ring opening and rearrangement on a metal surface. Our insights into the reaction cascade unveil fundamental chemical processes involving vinyl groups on surfaces. Because the formation of specific products is highly temperature-dependent, this innovative approach offers a valuable tool for fabricating complex, low-dimensional nanostructures with high precision and yield.

7.
ACS Nanosci Au ; 4(2): 128-135, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38644965

RESUMEN

Surface-catalyzed reactions have been used to synthesize carbon nanomaterials with atomically predefined structures. The recent discovery of a gold surface-catalyzed [3 + 3] cycloaromatization of isopropyl substituted arenes has enabled the on-surface synthesis of arylene-phenylene copolymers, where the surface activates the isopropyl substituents to form phenylene rings by intermolecular coupling. However, the resulting polymers suffered from undesired cross-linking when more than two molecules reacted at a single site. Here we show that such cross-links can be prevented through steric protection by attaching the isopropyl groups to larger arene cores. Upon thermal activation of isopropyl-substituted 8,9-dioxa-8a-borabenzo[fg]tetracene on Au(111), cycloaromatization is observed to occur exclusively between the two molecules. The cycloaromatization intermediate formed by the covalent linking of two molecules is prevented from reacting with further molecules by the wide benzotetracene core, resulting in highly selective one-to-one coupling. Our findings extend the versatility of the [3 + 3] cycloaromatization of isopropyl substituents and point toward steric protection as a powerful concept for suppressing competing reaction pathways in on-surface synthesis.

8.
Nat Chem ; 16(7): 1133-1140, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38459234

RESUMEN

Graphene nanoribbons (GNRs), nanometre-wide strips of graphene, are promising materials for fabricating electronic devices. Many GNRs have been reported, yet no scalable strategies are known for synthesizing GNRs with metal atoms and heteroaromatic units at precisely defined positions in the conjugated backbone, which would be valuable for tuning their optical, electronic and magnetic properties. Here we report the solution-phase synthesis of a porphyrin-fused graphene nanoribbon (PGNR). This PGNR has metalloporphyrins fused into a twisted fjord-edged GNR backbone; it consists of long chains (>100 nm), with a narrow optical bandgap (~1.0 eV) and high local charge mobility (>400 cm2 V-1 s-1 by terahertz spectroscopy). We use this PGNR to fabricate ambipolar field-effect transistors with appealing switching behaviour, and single-electron transistors displaying multiple Coulomb diamonds. These results open an avenue to π-extended nanostructures with engineerable electrical and magnetic properties by transposing the coordination chemistry of porphyrins into graphene nanoribbons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA