Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Immunity ; 56(2): 232-234, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36792568

RESUMEN

Pregnancy predisposes women to develop severe sepsis. However, the mechanisms regulating this remain unclear. In this issue of Immunity, Chen et al. describe the critical role of gut dysbiosis during pregnancy in driving excessive macrophage pyroptosis, increasing susceptibility to sepsis.


Asunto(s)
Microbioma Gastrointestinal , Sepsis , Embarazo , Humanos , Femenino , Microbioma Gastrointestinal/fisiología , Disbiosis
2.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443169

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by joint destruction and severe morbidity. Cigarette smoking (CS) can exacerbate the incidence and severity of RA. Although Th17 cells and the Aryl hydrocarbon receptor (AhR) have been implicated, the mechanism by which CS induces RA development remains unclear. Here, using transcriptomic analysis, we show that microRNA-132 is specifically induced in Th17 cells in the presence of either AhR agonist or CS-enriched medium. miRNA-132 thus induced is packaged into extracellular vesicles produced by Th17 and acts as a proinflammatory mediator increasing osteoclastogenesis through the down-regulation of COX2. In vivo, articular knockdown of miR-132 in murine arthritis models reduces the number of osteoclasts in the joints. Clinically, RA patients express higher levels of miR-132 than do healthy individuals. This increase is further elevated by cigarette smoking. Together, these results reveal a hitherto unrecognized mechanism by which CS could exacerbate RA and further advance understanding of the impact of environmental factors on the pathogenesis of chronic inflammatory diseases.


Asunto(s)
Artritis Reumatoide/genética , MicroARNs/genética , Osteogénesis/fisiología , Adulto , Anciano , Animales , Artritis Experimental/patología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fumar Cigarrillos/efectos adversos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Persona de Mediana Edad , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos , Receptores de Hidrocarburo de Aril/metabolismo , Humo , Células Th17/efectos de los fármacos , Células Th17/metabolismo , Contaminación por Humo de Tabaco/efectos adversos
3.
Blood ; 138(25): 2702-2713, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34407544

RESUMEN

Multiple organ dysfunction is the most severe outcome of sepsis progression and is highly correlated with a worse prognosis. Excessive neutrophil extracellular traps (NETs) are critical players in the development of organ failure during sepsis. Therefore, interventions targeting NET release would likely effectively prevent NET-based organ injury associated with this disease. Herein, we demonstrate that the pore-forming protein gasdermin D (GSDMD) is active in neutrophils from septic humans and mice and plays a crucial role in NET release. Inhibition of GSDMD with disulfiram or genic deletion abrogated NET formation, reducing multiple organ dysfunction and sepsis lethality. Mechanistically, we demonstrate that during sepsis, activation of the caspase-11/GSDMD pathway controls NET release by neutrophils during sepsis. In summary, our findings uncover a novel therapeutic use for disulfiram and suggest that GSDMD is a therapeutic target to improve sepsis treatment.


Asunto(s)
Trampas Extracelulares/genética , Eliminación de Gen , Péptidos y Proteínas de Señalización Intracelular/genética , Insuficiencia Multiorgánica/genética , Proteínas de Unión a Fosfato/genética , Sepsis/genética , Inhibidores del Acetaldehído Deshidrogenasa/uso terapéutico , Traslado Adoptivo , Anciano , Animales , Células Cultivadas , Disulfiram/uso terapéutico , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Insuficiencia Multiorgánica/patología , Insuficiencia Multiorgánica/terapia , Proteínas de Unión a Fosfato/antagonistas & inhibidores , Sepsis/patología , Sepsis/terapia
4.
Purinergic Signal ; 14(1): 73-82, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29236227

RESUMEN

Ectonucleoside triphosphate diphosphohydrolase-1, the major vascular/immune ectonucleotidase, exerts anti-thrombotic and immunomodulatory actions by hydrolyzing extracellular nucleotides (danger signals). Hypertension is characterized by vascular wall remodeling, endothelial dysfunction, and immune infiltration. Here our aim was to investigate the impact of arterial hypertension on CD39 expression and activity in mice. Arterial expression of CD39 was determined by reverse transcription quantitative real-time PCR in experimental models of hypertension, including angiotensin II (AngII)-treated mice (1 mg/kg/day, 21 days), deoxycorticosterone acetate-salt mice (1% salt and uninephrectomy, 21 days), and spontaneously hypertensive rats. A decrease in CD39 expression occurred in the resistance and conductance arteries of hypertensive animals with no effect on lymphoid organs. In AngII-treated mice, a decrease in CD39 protein levels (Western blot) was corroborated by reduced arterial nucleotidase activity, as evaluated by fluorescent (etheno)-ADP hydrolysis. Moreover, serum-soluble ADPase activity, supported by CD39, was significantly decreased in AngII-treated mice. Experiments were conducted in vitro on vascular cells to determine the elements underlying this downregulation. We found that CD39 transcription was reduced by proinflammatory cytokines interleukin (IL)-1ß and tumor necrosis factor alpha on vascular smooth muscle cells and by IL-6 and anti-inflammatory and profibrotic cytokine transforming growth factor beta 1 on endothelial cells. In addition, CD39 expression was downregulated by mechanical stretch on vascular cells. Arterial expression and activity of CD39 were decreased in hypertension as a result of both a proinflammatory environment and mechanical strain exerted on vascular cells. Reduced ectonucleotidase activity may alter the vascular condition, thus enhancing arterial damage, remodeling, or thrombotic events.


Asunto(s)
Antígenos CD/biosíntesis , Apirasa/biosíntesis , Arterias/metabolismo , Hipertensión/metabolismo , Animales , Células Endoteliales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/metabolismo
5.
Pharmacol Res ; 117: 1-8, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27979692

RESUMEN

Sepsis is one of the main causes of mortality in hospitalized patients. Despite the recent technical advances and the development of novel generation of antibiotics, severe sepsis remains a major clinical and scientific challenge in modern medicine. Unsuccessful efforts have been dedicated to the search of therapeutic options to treat the deleterious inflammatory components of sepsis. Recent findings on neuronal networks controlling immunity raised expectations for novel therapeutic strategies to promote the regulation of sterile inflammation, such as autoimmune diseases. Interesting studies have dissected the anatomical constituents of the so-called "cholinergic anti-inflammatory pathway", suggesting that electrical vagus nerve stimulation and pharmacological activation of beta-2 adrenergic and alpha-7 nicotinic receptors could be alternative strategies for improving inflammatory conditions. However, the literature on infectious diseases, such as sepsis, is still controversial and, therefore, the real therapeutic potential of this neuroimmune pathway is not well defined. In this review, we will discuss the beneficial and detrimental effects of neural manipulation in sepsis, which depend on the multiple variables of the immune system and the nature of the infection. These observations suggest future critical studies to validate the clinical implications of vagal parasympathetic signaling in sepsis treatment.


Asunto(s)
Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Colinérgicos/farmacología , Colinérgicos/uso terapéutico , Sepsis/tratamiento farmacológico , Animales , Humanos , Sistema Inmunológico/efectos de los fármacos , Inflamación/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Nervio Vago/efectos de los fármacos
6.
Proc Natl Acad Sci U S A ; 108(22): 9220-5, 2011 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-21576463

RESUMEN

Type 17 helper T (Th17) cells are implicated in the pathogenesis many of human autoimmune diseases. Development of Th17 can be enhanced by the activation of aryl hydrocarbon receptor (AHR) whose ligands include the environmental pollutant dioxin, potentially linking environmental factors to the increased prevalence of autoimmune disease. We report here that nitric oxide (NO) can suppress the proliferation and function of polarized murine and human Th17 cells. NO also inhibits AHR expression in Th17 cells and the downstream events of AHR activation, including IL-22, IL-23 receptor, and Cyp1a1. Conversely, NO did not affect the polarization of Th17 cells from mice deficient in AHR. Furthermore, mice lacking inducible nitric oxide synthase (Nos2(-/-)) developed more severe experimental autoimmune encephalomyelitis than WT mice, with elevated AHR expression, increased IL-17A, and IL-22 synthesis. NO may therefore represent an important endogenous regulator to prevent overexpansion of Th17 cells and control of autoimmune diseases caused by environmental pollutants.


Asunto(s)
Óxido Nítrico/metabolismo , Linfocitos T Colaboradores-Inductores/citología , Células Th17/metabolismo , Animales , Enfermedades Autoinmunes/metabolismo , Proliferación Celular , GMP Cíclico/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Humanos , Inflamación , Interleucina-10/metabolismo , Interleucina-2/metabolismo , Interleucinas/metabolismo , Ligandos , Ratones , Ratones Endogámicos BALB C , Modelos Biológicos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteína Proto-Oncogénica c-ets-1/metabolismo , Receptores de Interleucina/metabolismo , Interleucina-22
7.
J Clin Invest ; 133(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37104043

RESUMEN

Patients with severe COVID-19 develop acute respiratory distress syndrome (ARDS) that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that complement component 5a (C5a), through its cellular receptor C5aR1, has potent proinflammatory actions and plays immunopathological roles in inflammatory diseases, we investigated whether the C5a/C5aR1 pathway could be involved in COVID-19 pathophysiology. C5a/C5aR1 signaling increased locally in the lung, especially in neutrophils of critically ill patients with COVID-19 compared with patients with influenza infection, as well as in the lung tissue of K18-hACE2 Tg mice (Tg mice) infected with SARS-CoV-2. Genetic and pharmacological inhibition of C5aR1 signaling ameliorated lung immunopathology in Tg-infected mice. Mechanistically, we found that C5aR1 signaling drives neutrophil extracellular traps-dependent (NETs-dependent) immunopathology. These data confirm the immunopathological role of C5a/C5aR1 signaling in COVID-19 and indicate that antagonists of C5aR1 could be useful for COVID-19 treatment.


Asunto(s)
COVID-19 , Trampas Extracelulares , Humanos , Animales , Ratones , COVID-19/genética , COVID-19/patología , Trampas Extracelulares/metabolismo , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/metabolismo , Pulmón/patología , Complemento C5a/genética , Complemento C5a/metabolismo
8.
Crit Care Med ; 40(9): 2631-7, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22732279

RESUMEN

OBJECTIVES: To investigate the role of toll-like receptor 9 on sepsis-induced failure of neutrophil recruitment to the site of infection. DESIGN: Prospective experimental study. SETTING: University research laboratory. INTERVENTIONS: Model of polymicrobial sepsis induced by cecal ligation and puncture in wild-type and toll-like receptor 9-deficient mice. MEASUREMENTS AND MAIN RESULTS: Toll-like receptor 9-deficient mice with cecal ligation and puncture-induced severe sepsis did not demonstrate failure of neutrophil migration and consequently had a low systemic inflammatory response and a high survival rate. Upon investigating the mechanism by which toll-like receptor 9 deficiency prevents the failure of neutrophil migration, it was found that neutrophils derived from toll-like receptor 9--deficient mice with cecal ligation and puncture-induced severe sepsis expressed high levels of chemokine C-X-C motif receptor 2 (CXCR2) and had reduced induction of G-protein-coupled receptor kinase 2. CONCLUSIONS: These findings suggest that the poor outcome of severe sepsis is associated with toll-like receptor 9 activation in neutrophils, which triggers G-protein-coupled receptor kinase 2 expression and CXCR2 downregulation. These events account for the reduction of neutrophil migration to the site of infection, with consequent spreading of the infection, onset of the systemic inflammatory response, and a decrease in survival.


Asunto(s)
Quimiotaxis/fisiología , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Infiltración Neutrófila/fisiología , Sepsis/metabolismo , Receptor Toll-Like 9/metabolismo , Animales , Supervivencia Celular , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Valores de Referencia , Sensibilidad y Especificidad , Estadísticas no Paramétricas
9.
Elife ; 112022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35666101

RESUMEN

COVID-19 is a disease of dysfunctional immune responses, but the mechanisms triggering immunopathogenesis are not established. The functional plasticity of macrophages allows this cell type to promote pathogen elimination and inflammation or suppress inflammation and promote tissue remodeling and injury repair. During an infection, the clearance of dead and dying cells, a process named efferocytosis, can modulate the interplay between these contrasting functions. Here, we show that engulfment of SARS-CoV-2-infected apoptotic cells exacerbates inflammatory cytokine production, inhibits the expression of efferocytic receptors, and impairs continual efferocytosis by macrophages. We also provide evidence supporting that lung monocytes and macrophages from severe COVID-19 patients have compromised efferocytic capacity. Our findings reveal that dysfunctional efferocytosis of SARS-CoV-2-infected cell corpses suppresses macrophage anti-inflammation and efficient tissue repair programs and provides mechanistic insights for the excessive production of pro-inflammatory cytokines and accumulation of tissue damage associated with COVID-19 immunopathogenesis.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antiinflamatorios/farmacología , Apoptosis , Humanos , Macrófagos/metabolismo , Fagocitosis
10.
J Mol Cell Biol ; 14(4)2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35451490

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a hyperinflammatory state and lymphocytopenia, a hallmark that appears as both signature and prognosis of disease severity outcome. Although cytokine storm and a sustained inflammatory state are commonly associated with immune cell depletion, it is still unclear whether direct SARS-CoV-2 infection of immune cells could also play a role in this scenario by harboring viral replication. We found that monocytes, as well as both B and T lymphocytes, were susceptible to SARS-CoV-2 infection in vitro, accumulating double-stranded RNA consistent with viral RNA replication and ultimately leading to expressive T cell apoptosis. In addition, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from coronavirus disease 2019 (COVID-19) patients. The rates of SARS-CoV-2-infected monocytes in peripheral blood mononuclear cells from COVID-19 patients increased over time from symptom onset, with SARS-CoV-2-positive monocytes, B cells, and CD4+ T lymphocytes also detected in postmortem lung tissue. These results indicated that SARS-CoV-2 infection of blood-circulating leukocytes in COVID-19 patients might have important implications for disease pathogenesis and progression, immune dysfunction, and virus spread within the host.


Asunto(s)
COVID-19 , SARS-CoV-2 , Síndrome de Liberación de Citoquinas , Humanos , Leucocitos Mononucleares , Monocitos
11.
Am J Respir Crit Care Med ; 182(3): 360-8, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20339148

RESUMEN

RATIONALE: Recovering the neutrophil migration to the infectious focus improves survival in severe sepsis. Recently, we demonstrated that the cystathionine gamma-lyase (CSE)/hydrogen sulfide (H(2)S) pathway increased neutrophil recruitment to inflammatory focus during sterile inflammation. OBJECTIVES: To evaluate if H(2)S administration increases neutrophil migration to infectious focus and survival of mice. METHODS: Sepsis was induced by cecal ligation and puncture (CLP). MEASUREMENTS AND MAIN RESULTS: The pretreatments of mice with H(2)S donors (NaHS or Lawesson's reagent) improved leukocyte rolling/adhesion in the mesenteric microcirculation as well as neutrophil migration. Consequently, bacteremia levels were reduced, hypotension and lung lesions were prevented, and the survival rate increased from approximately 13% to approximately 80%. Even when treatment was delayed (6 h after CLP), a highly significant reduction in mortality compared with untreated mice was observed. Moreover, H(2)S pretreatment prevented the down-regulation of CXCR2 and l-selectin and the up-regulation of CD11b and G protein-coupled receptor kinase 2 in neutrophils during sepsis. H(2)S also prevented the reduction of intercellular adhesion molecule-1 expression in the endothelium of the mesenteric microcirculation in severe sepsis. Confirming the critical role of H(2)S on sepsis outcome, pretreatment with dl-propargylglycine (a CSE inhibitor) inhibited neutrophil migration to the infectious focus, enhanced lung lesions, and induced high mortality in mice subjected to nonsevere sepsis (from 0 to approximately 80%). The beneficial effects of H(2)S were blocked by glibenclamide (a ATP-dependent K(+) channel blocker). CONCLUSIONS: These results showed that H(2)S restores neutrophil migration to the infectious focus and improves survival outcome in severe sepsis by an ATP-dependent K(+) channel-dependent mechanism.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Sulfuro de Hidrógeno/farmacología , Canales KATP/fisiología , Neutrófilos/efectos de los fármacos , Sepsis/mortalidad , Sepsis/patología , Animales , Antígeno CD11b/fisiología , Regulación hacia Abajo/efectos de los fármacos , Endotelio Vascular , Molécula 1 de Adhesión Intercelular/efectos de los fármacos , Selectina L/fisiología , Masculino , Mesenterio/irrigación sanguínea , Ratones , Neutrófilos/fisiología , Receptores de Interleucina-8B/fisiología , Regulación hacia Arriba/efectos de los fármacos
12.
Front Oncol ; 11: 686445, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34650910

RESUMEN

In approximately 15% of patients with acute myeloid leukemia (AML), total and phosphorylated EGFR proteins have been reported to be increased compared to healthy CD34+ samples. However, it is unclear if this subset of patients would benefit from EGFR signaling pharmacological inhibition. Pre-clinical studies on AML cells provided evidence on the pro-differentiation benefits of EGFR inhibitors when combined with ATRA or ATO in vitro. Despite the success of ATRA and ATO in the treatment of patients with acute promyelocytic leukemia (APL), therapy-associated resistance is observed in 5-10% of the cases, pointing to a clear need for new therapeutic strategies for those patients. In this context, the functional role of EGFR tyrosine-kinase inhibitors has never been evaluated in APL. Here, we investigated the EGFR pathway in primary samples along with functional in vitro and in vivo studies using several APL models. We observed that total and phosphorylated EGFR (Tyr992) was expressed in 28% and 19% of blast cells from APL patients, respectively, but not in healthy CD34+ samples. Interestingly, the expression of the EGF was lower in APL plasma samples than in healthy controls. The EGFR ligand AREG was detected in 29% of APL patients at diagnosis, but not in control samples. In vitro, treatment with the EGFR inhibitor gefitinib (ZD1839) reduced cell proliferation and survival of NB4 (ATRA-sensitive) and NB4-R2 (ATRA-resistant) cells. Moreover, the combination of gefitinib with ATRA and ATO promoted myeloid cell differentiation in ATRA- and ATO-resistant APL cells. In vivo, the combination of gefitinib and ATRA prolonged survival compared to gefitinib- or vehicle-treated leukemic mice in a syngeneic transplantation model, while the gain in survival did not reach statistical difference compared to treatment with ATRA alone. Our results suggest that gefitinib is a potential adjuvant agent that can mitigate ATRA and ATO resistance in APL cells. Therefore, our data indicate that repurposing FDA-approved tyrosine-kinase inhibitors could provide new perspectives into combination therapy to overcome drug resistance in APL patients.

13.
J Exp Med ; 218(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33231615

RESUMEN

Severe cases of COVID-19 are characterized by a strong inflammatory process that may ultimately lead to organ failure and patient death. The NLRP3 inflammasome is a molecular platform that promotes inflammation via cleavage and activation of key inflammatory molecules including active caspase-1 (Casp1p20), IL-1ß, and IL-18. Although participation of the inflammasome in COVID-19 has been highly speculated, the inflammasome activation and participation in the outcome of the disease are unknown. Here we demonstrate that the NLRP3 inflammasome is activated in response to SARS-CoV-2 infection and is active in COVID-19 patients. Studying moderate and severe COVID-19 patients, we found active NLRP3 inflammasome in PBMCs and tissues of postmortem patients upon autopsy. Inflammasome-derived products such as Casp1p20 and IL-18 in the sera correlated with the markers of COVID-19 severity, including IL-6 and LDH. Moreover, higher levels of IL-18 and Casp1p20 are associated with disease severity and poor clinical outcome. Our results suggest that inflammasomes participate in the pathophysiology of the disease, indicating that these platforms might be a marker of disease severity and a potential therapeutic target for COVID-19.


Asunto(s)
COVID-19/patología , COVID-19/virología , Inflamasomas/metabolismo , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Apoptosis , Comorbilidad , Citocinas/biosíntesis , Humanos , Pulmón/patología , Monocitos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Cambios Post Mortem , Resultado del Tratamiento
14.
Crit Care Med ; 38(8): 1718-25, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20543670

RESUMEN

OBJECTIVE: To investigate the role of regulatory T cells in the modulation of long-term immune dysfunction during experimental sepsis. It is well established that sepsis predisposes to development of a pronounced immunosuppression. Nevertheless, the mechanisms underlying the immune dysfunction after sepsis are still not well understood. DESIGN: Prospective experimental study. SETTING: University research laboratory. INTERVENTIONS: Wild-type mice underwent cecal ligation and puncture and were treated with antibiotic during 3 days after surgery. On days 1, 7, or 15 after cecal ligation and puncture, the frequency of regulatory T cells, proliferation of CD4 T cells and bacterial counts were evaluated. Fifteen days after cecal ligation and puncture, surviving mice underwent secondary pulmonary infection by intranasal inoculation of nonlethal dose of Legionella pneumophila. Some mice received agonistic glucocorticoid-induced tumor necrosis factor receptor antibody (DTA-1) before induction of secondary infection. MEASUREMENTS AND MAIN RESULTS: Mice surviving cecal ligation and puncture showed a markedly increased frequency of regulatory T cells in thymus and spleen, which was associated with reduced proliferation of CD4 T cells. Fifteen days after cecal ligation and puncture, all sepsis-surviving mice succumbed to nonlethal injection of L. pneumophila. Treatment of mice with DTA-1 antibody reduced frequency of regulatory T cells, restored CD4 T cell proliferation, reduced the levels of bacteria in spleen, and markedly improved survival of L. pneumophila infection. CONCLUSION: These findings suggest that regulatory T cells play an important role in the progression and establishment of immune dysfunction observed in experimental sepsis.


Asunto(s)
Tolerancia Inmunológica , Sepsis/inmunología , Linfocitos T Reguladores/inmunología , Animales , Aspartato Aminotransferasas/metabolismo , Complejo CD3/metabolismo , Antígenos CD4/metabolismo , Proliferación Celular , Distribución de Chi-Cuadrado , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Citometría de Flujo , Hipersensibilidad Tardía/inmunología , Legionella pneumophila , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Sepsis/metabolismo , Sepsis/microbiología , Estadísticas no Paramétricas , Tasa de Supervivencia
15.
J Leukoc Biol ; 108(4): 1215-1223, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32745297

RESUMEN

Macrophages are highly plastic cells, responding to diverse environmental stimuli to acquire different functional phenotypes. Signaling through MAPKs has been reported to regulate the differentiation of macrophages, but the role of ERK5 in IL-4-mediated M2 macrophage differentiation is still unclear. Here, we showed that the ERK5 signaling pathway plays a critical role in IL-4-induced M2 macrophage differentiation. Pharmacologic inhibition of MEK5, an upstream activator of ERK5, markedly reduced the expression of classical M2 markers, such as Arg-1, Ym-1, and Fizz-1, as well as the production of M2-related chemokines and cytokines, CCL22, CCL17, and IGF-1 in IL-4-stimulated macrophages. Moreover, pharmacologic inhibition of ERK5 also decreased the expression of several M2 markers induced by IL-4. In accordance, myeloid cell-specific Erk5 depletion (Erk5∆mye ), using LysMcre /Erk5f/f mice, confirmed the involvement of ERK5 in IL-4-induced M2 polarization. Mechanistically, the inhibition of ERK5 did not affect STAT3 or STAT6 phosphorylation, suggesting that ERK5 signaling regulates M2 differentiation in a STAT3 and STAT6-independent manner. However, genetic deficiency or pharmacologic inhibition of the MEK5/ERK5 pathway reduced the expression of c-Myc in IL-4-activated macrophages, which is a critical transcription factor involved in M2 differentiation. Our study thus suggests that the MEK5/ERK5 signaling pathway is crucial in IL-4-induced M2 macrophage differentiation through the induction of c-Myc expression.


Asunto(s)
Diferenciación Celular/inmunología , Interleucina-4/inmunología , MAP Quinasa Quinasa 5/inmunología , Sistema de Señalización de MAP Quinasas/inmunología , Macrófagos/inmunología , Proteína Quinasa 7 Activada por Mitógenos/inmunología , Proteínas Proto-Oncogénicas c-myc/inmunología , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/inmunología , Diferenciación Celular/genética , Regulación de la Expresión Génica/inmunología , Interleucina-4/genética , MAP Quinasa Quinasa 5/genética , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Proteína Quinasa 7 Activada por Mitógenos/genética , Proteínas Proto-Oncogénicas c-myc/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/inmunología , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/inmunología
16.
bioRxiv ; 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34013264

RESUMEN

Although SARS-CoV-2 severe infection is associated with a hyperinflammatory state, lymphopenia is an immunological hallmark, and correlates with poor prognosis in COVID-19. However, it remains unknown if circulating human lymphocytes and monocytes are susceptible to SARS-CoV-2 infection. In this study, SARS-CoV-2 infection of human peripheral blood mononuclear cells (PBMCs) was investigated both in vitro and in vivo . We found that in vitro infection of whole PBMCs from healthy donors was productive of virus progeny. Results revealed that monocytes, as well as B and T lymphocytes, are susceptible to SARS-CoV-2 active infection and viral replication was indicated by detection of double-stranded RNA. Moreover, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from COVID-19 patients, and less frequently in CD4 + T lymphocytes. The rates of SARS-CoV-2-infected monocytes in PBMCs from COVID-19 patients increased over time from symptom onset. Additionally, SARS-CoV-2-positive monocytes and B and CD4+T lymphocytes were detected by immunohistochemistry in post mortem lung tissue. SARS-CoV-2 infection of blood circulating leukocytes in COVID-19 patients may have important implications for disease pathogenesis, immune dysfunction, and virus spread within the host.

17.
J Infect ; 77(5): 391-397, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30226191

RESUMEN

Sepsis is an overwhelming systemic inflammation resulting from an uncontrolled infection that causes extensive tissue damage, organ dysfunction and eventually death. A growing body of evidence indicates that impaired neutrophil migration to the site of infection is associated with poor outcome in sepsis. Here we show that galectin-3 (Gal-3), an endogenous glycan-binding protein, plays a critical role in sepsis outcome. We found that serum Gal-3 concentration increased in patients with septic shock and mice undergoing sepsis induced by cecal ligation and puncture (CLP). Mice deficient in Gal-3 (Gal-3 KO) are more resistant to sepsis induced by CLP, showing lower levels of biochemical markers and neutrophil infiltration for organ injury/dysfunction than those observed in wild-type mice (WT). Furthermore, Gal-3 KO mice show an increased number of neutrophils in the primary focus of infection and reduced bacterial loads in the peritoneal cavity, blood, and lungs. Mechanistically, blood neutrophils from septic mice show higher levels of surface-bound Gal-3 than neutrophils from naive mice. The deficiency of Gal-3 was associated with increased rolling and adhesion of these cells in mesenteric venules. Our results indicate that Gal-3, secreted during sepsis, inhibits neutrophil migration into the infectious focus, which promotes the bacterial spread and worsens the outcome of sepsis.


Asunto(s)
Coinfección/sangre , Coinfección/inmunología , Galectina 3/sangre , Infiltración Neutrófila , Sepsis/inmunología , Sepsis/microbiología , Anciano , Animales , Proteínas Sanguíneas , Modelos Animales de Enfermedad , Femenino , Galectina 3/inmunología , Galectinas , Humanos , Pulmón/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Peritoneo/microbiología
18.
Front Immunol ; 9: 962, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867945

RESUMEN

The ST2 receptor is a member of the Toll/IL-1R superfamily and interleukin-33 (IL-33) is its agonist. Recently, it has been demonstrated that IL-33/ST2 axis plays key roles in inflammation and immune mediated diseases. Here, we investigated the effect of ST2 deficiency in Staphylococcus aureus-induced septic arthritis physiopathology. Synovial fluid samples from septic arthritis and osteoarthritis individuals were assessed regarding IL-33 and soluble (s) ST2 levels. The IL-33 levels in samples from synovial fluid were significantly increased, whereas no sST2 levels were detected in patients with septic arthritis when compared with osteoarthritis individuals. The intra-articular injection of 1 × 107 colony-forming unity/10 µl of S. aureus American Type Culture Collection 6538 in wild-type (WT) mice induced IL-33 and sST2 production with a profile resembling the observation in the synovial fluid of septic arthritis patients. Data using WT, and ST2 deficient (-/-) and interferon-γ (IFN-γ)-/- mice showed that ST2 deficiency shifts the immune balance toward a type 1 immune response that contributes to eliminating the infection due to enhanced microbicide effect via NO production by neutrophils and macrophages. In fact, the treatment of ST2-/- bone marrow-derived macrophage cells with anti-IFN-γ abrogates the beneficial phenotype in the absence of ST2, which confirms that ST2 deficiency leads to IFN-γ expression and boosts the bacterial killing activity of macrophages against S. aureus. In agreement, WT cells achieved similar immune response to ST2 deficiency by IFN-γ treatment. The present results unveil a previously unrecognized beneficial effect of ST2 deficiency in S. aureus-induced septic arthritis.


Asunto(s)
Artritis Infecciosa/inmunología , Artritis Infecciosa/microbiología , Proteína 1 Similar al Receptor de Interleucina-1/genética , Infecciones Estafilocócicas/inmunología , Líquido Sinovial/inmunología , Animales , Femenino , Humanos , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-33/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoartritis de la Rodilla/inmunología , Staphylococcus aureus
19.
Nat Commun ; 8: 14919, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28374774

RESUMEN

Patients who survive sepsis can develop long-term immune dysfunction, with expansion of the regulatory T (Treg) cell population. However, how Treg cells proliferate in these patients is not clear. Here we show that IL-33 has a major function in the induction of this immunosuppression. Mice deficient in ST2 (IL-33R) develop attenuated immunosuppression in cases that survive sepsis, whereas treatment of naive wild-type mice with IL-33 induces immunosuppression. IL-33, released during tissue injury in sepsis, activates type 2 innate lymphoid cells, which promote polarization of M2 macrophages, thereby enhancing expansion of the Treg cell population via IL-10. Moreover, sepsis-surviving patients have more Treg cells, IL-33 and IL-10 in their peripheral blood. Our study suggests that targeting IL-33 may be an effective treatment for sepsis-induced immunosuppression.


Asunto(s)
Tolerancia Inmunológica/inmunología , Interleucina-33/inmunología , Sepsis/inmunología , Linfocitos T Reguladores/inmunología , Anciano , Animales , Femenino , Humanos , Tolerancia Inmunológica/genética , Proteína 1 Similar al Receptor de Interleucina-1/deficiencia , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Interleucina-10/inmunología , Interleucina-10/metabolismo , Interleucina-33/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Sepsis/genética , Sepsis/metabolismo , Linfocitos T Reguladores/metabolismo
20.
Cancer Immunol Res ; 4(4): 312-22, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26817997

RESUMEN

Survivors from sepsis are in an immunosuppressed state that is associated with higher long-term mortality and risk of opportunistic infections. Whether these factors contribute to neoplastic proliferation, however, remains unclear. Tumor-associated macrophages (TAM) can support malignant cell proliferation, survival, and angiogenesis. We addressed the relationship between the post-sepsis state, tumor progression and TAM accumulation, and phenotypic and genetic profile, using a mouse model of sepsis resolution and then B16 melanoma in mice. In addition, we measured the serum concentrations of TNFα, TGFß, CCL2, and CXCL12 and determined the effect of in vivo CXCR4/CXCL12 inhibition in this context. Mice that survived sepsis showed increased tumor progression both in the short and long term, and survival times were shorter. TAM accumulation, TAM local proliferation, and serum concentrations of TGFß, CXCL12, and TNFα were increased. Naïve mice inoculated with B16 together with macrophages from post-sepsis mice also had faster tumor progression and shorter survival. Post-sepsis TAMs had less expression of MHC-II and leukocyte activation-related genes. Inhibition of CXCR4/CXCL12 prevented the post-sepsis-induced tumor progression, TAM accumulation, and TAM in situ proliferation. Collectively, our data show that the post-sepsis state was associated with TAM accumulation through CXCR4/CXCL12, which contributed to B16 melanoma progression.


Asunto(s)
Quimiocina CXCL12/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Receptores CXCR4/metabolismo , Sepsis/inmunología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Expresión Génica , Masculino , Melanoma Experimental , Ratones , Metástasis de la Neoplasia , Neoplasias/complicaciones , Neoplasias/patología , Sepsis/complicaciones , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA