Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Cell ; 164(3): 447-59, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26777403

RESUMEN

Plant roots forage the soil for minerals whose concentrations can be orders of magnitude away from those required for plant cell function. Selective uptake in multicellular organisms critically requires epithelia with extracellular diffusion barriers. In plants, such a barrier is provided by the endodermis and its Casparian strips--cell wall impregnations analogous to animal tight and adherens junctions. Interestingly, the endodermis undergoes secondary differentiation, becoming coated with hydrophobic suberin, presumably switching from an actively absorbing to a protective epithelium. Here, we show that suberization responds to a wide range of nutrient stresses, mediated by the stress hormones abscisic acid and ethylene. We reveal a striking ability of the root to not only regulate synthesis of suberin, but also selectively degrade it in response to ethylene. Finally, we demonstrate that changes in suberization constitute physiologically relevant, adaptive responses, pointing to a pivotal role of the endodermal membrane in nutrient homeostasis.


Asunto(s)
Arabidopsis/fisiología , Raíces de Plantas/fisiología , Ácido Abscísico/metabolismo , Arabidopsis/citología , Diferenciación Celular , Etilenos/metabolismo , Fluoresceínas/análisis , Lípidos/química , Raíces de Plantas/citología , Transducción de Señal
2.
Nature ; 555(7697): 529-533, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29539635

RESUMEN

In vascular plants, the root endodermis surrounds the central vasculature as a protective sheath that is analogous to the polarized epithelium in animals, and contains ring-shaped Casparian strips that restrict diffusion. After an initial lag phase, individual endodermal cells suberize in an apparently random fashion to produce 'patchy' suberization that eventually generates a zone of continuous suberin deposition. Casparian strips and suberin lamellae affect paracellular and transcellular transport, respectively. Most angiosperms maintain some isolated cells in an unsuberized state as so-called 'passage cells', which have previously been suggested to enable uptake across an otherwise-impermeable endodermal barrier. Here we demonstrate that these passage cells are late emanations of a meristematic patterning process that reads out the underlying non-radial symmetry of the vasculature. This process is mediated by the non-cell-autonomous repression of cytokinin signalling in the root meristem, and leads to distinct phloem- and xylem-pole-associated endodermal cells. The latter cells can resist abscisic acid-dependent suberization to produce passage cells. Our data further demonstrate that, during meristematic patterning, xylem-pole-associated endodermal cells can dynamically alter passage-cell numbers in response to nutrient status, and that passage cells express transporters and locally affect the expression of transporters in adjacent cortical cells.


Asunto(s)
Arabidopsis/anatomía & histología , Arabidopsis/citología , Tipificación del Cuerpo , Citocininas/metabolismo , Difusión , Endodermo/citología , Endodermo/metabolismo , Transducción de Señal , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular , Endodermo/anatomía & histología , Ácidos Indolacéticos/metabolismo , Meristema/anatomía & histología , Meristema/citología , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Células Vegetales/metabolismo
3.
Nature ; 559(7714): E9, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29925940

RESUMEN

In this Letter, owing to a copying error in Illustrator, the two centre panels in Extended Data Fig. 7a were identical. This error has been corrected online. The old, incorrect Extended Data Fig. 7 is shown in the Supplementary Information to this Amendment for transparency. Some typos ('occurence') in Figs. 1, 2 and 3 have also been corrected and the publication details for ref. 32 have been added.

4.
Proc Natl Acad Sci U S A ; 112(33): 10533-8, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26124109

RESUMEN

The endodermis in roots acts as a selectivity filter for nutrient and water transport essential for growth and development. This selectivity is enabled by the formation of lignin-based Casparian strips. Casparian strip formation is initiated by the localization of the Casparian strip domain proteins (CASPs) in the plasma membrane, at the site where the Casparian strip will form. Localized CASPs recruit Peroxidase 64 (PER64), a Respiratory Burst Oxidase Homolog F, and Enhanced Suberin 1 (ESB1), a dirigent-like protein, to assemble the lignin polymerization machinery. However, the factors that control both expression of the genes encoding this biosynthetic machinery and its localization to the Casparian strip formation site remain unknown. Here, we identify the transcription factor, MYB36, essential for Casparian strip formation. MYB36 directly and positively regulates the expression of the Casparian strip genes CASP1, PER64, and ESB1. Casparian strips are absent in plants lacking a functional MYB36 and are replaced by ectopic lignin-like material in the corners of endodermal cells. The barrier function of Casparian strips in these plants is also disrupted. Significantly, ectopic expression of MYB36 in the cortex is sufficient to reprogram these cells to start expressing CASP1-GFP, correctly localize the CASP1-GFP protein to form a Casparian strip domain, and deposit a Casparian strip-like structure in the cell wall at this location. These results demonstrate that MYB36 is controlling expression of the machinery required to locally polymerize lignin in a fine band in the cell wall for the formation of the Casparian strip.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Pared Celular/metabolismo , Lignina/química , Factores de Transcripción/fisiología , Alelos , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Endodermo/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/metabolismo , Mutación , Fenotipo , Raíces de Plantas/metabolismo , Plásmidos/metabolismo , Reacción en Cadena de la Polimerasa , Análisis de Componente Principal , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína
5.
Proc Natl Acad Sci U S A ; 110(35): 14498-503, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23940370

RESUMEN

The endodermis acts as a "second skin" in plant roots by providing the cellular control necessary for the selective entry of water and solutes into the vascular system. To enable such control, Casparian strips span the cell wall of adjacent endodermal cells to form a tight junction that blocks extracellular diffusion across the endodermis. This junction is composed of lignin that is polymerized by oxidative coupling of monolignols through the action of a NADPH oxidase and peroxidases. Casparian strip domain proteins (CASPs) correctly position this biosynthetic machinery by forming a protein scaffold in the plasma membrane at the site where the Casparian strip forms. Here, we show that the dirigent-domain containing protein, enhanced suberin1 (ESB1), is part of this machinery, playing an essential role in the correct formation of Casparian strips. ESB1 is localized to Casparian strips in a CASP-dependent manner, and in the absence of ESB1, disordered and defective Casparian strips are formed. In addition, loss of ESB1 disrupts the localization of the CASP1 protein at the casparian strip domain, suggesting a reciprocal requirement for both ESB1 and CASPs in forming the casparian strip domain.


Asunto(s)
Lignina/metabolismo , Raíces de Plantas/fisiología , Arabidopsis/metabolismo , Arabidopsis/fisiología , Secuencia de Bases , Cartilla de ADN , Raíces de Plantas/genética , Reacción en Cadena de la Polimerasa
6.
Plant Cell ; 24(10): 4083-95, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23104828

RESUMEN

Formative, also called asymmetric, cell divisions produce daughter cells with different identities. Like other divisions, formative divisions rely first of all on the cell cycle machinery with centrally acting cyclin-dependent kinases (CDKs) and their cyclin partners to control progression through the cell cycle. However, it is still largely obscure how developmental cues are translated at the cellular level to promote asymmetric divisions. Here, we show that formative divisions in the shoot and root of the flowering plant Arabidopsis thaliana are controlled by a common mechanism that relies on the activity level of the Cdk1 homolog CDKA;1, with medium levels being sufficient for symmetric divisions but high levels being required for formative divisions. We reveal that the function of CDKA;1 in asymmetric cell divisions operates through a transcriptional regulation system that is mediated by the Arabidopsis Retinoblastoma homolog RBR1. RBR1 regulates not only cell cycle genes, but also, independent of the cell cycle transcription factor E2F, genes required for formative divisions and cell fate acquisition, thus directly linking cell proliferation with differentiation. This mechanism allows the implementation of spatial information, in the form of high kinase activity, with intracellular gating of developmental decisions.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/citología , División Celular Asimétrica/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Proliferación Celular , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/fisiología , Factores de Transcripción E2F/fisiología , Regulación de la Expresión Génica de las Plantas , Meristema/citología , Meristema/metabolismo , Meristema/ultraestructura , Fenotipo , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Raíces de Plantas/ultraestructura , Estomas de Plantas/metabolismo , Estomas de Plantas/ultraestructura
7.
Proc Natl Acad Sci U S A ; 109(25): 10101-6, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22665765

RESUMEN

Casparian strips are ring-like cell-wall modifications in the root endodermis of vascular plants. Their presence generates a paracellular barrier, analogous to animal tight junctions, that is thought to be crucial for selective nutrient uptake, exclusion of pathogens, and many other processes. Despite their importance, the chemical nature of Casparian strips has remained a matter of debate, confounding further molecular analysis. Suberin, lignin, lignin-like polymers, or both, have been claimed to make up Casparian strips. Here we show that, in Arabidopsis, suberin is produced much too late to take part in Casparian strip formation. In addition, we have generated plants devoid of any detectable suberin, which still establish functional Casparian strips. In contrast, manipulating lignin biosynthesis abrogates Casparian strip formation. Finally, monolignol feeding and lignin-specific chemical analysis indicates the presence of archetypal lignin in Casparian strips. Our findings establish the chemical nature of the primary root-diffusion barrier in Arabidopsis and enable a mechanistic dissection of the formation of Casparian strips, which are an independent way of generating tight junctions in eukaryotes.


Asunto(s)
Arabidopsis/fisiología , Biopolímeros/fisiología , Lignina/fisiología , Lípidos/fisiología
8.
Proc Natl Acad Sci U S A ; 107(11): 5214-9, 2010 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-20142472

RESUMEN

The endodermis is a root cell layer common to higher plants and of fundamental importance for root function and nutrient uptake. The endodermis separates outer (peripheral) from inner (central) cell layers by virtue of its Casparian strips, precisely aligned bands of specialized wall material. Here we reveal that the membrane at the Casparian strip is a diffusional barrier between the central and peripheral regions of the plasma membrane and that it mediates attachment to the extracellular matrix. This membrane region thus functions like a tight junction in animal epithelia, although plants lack the molecular modules that establish tight junction in animals. We have also identified a pair of influx and efflux transporters that mark both central and peripheral domains of the plasma membrane. These transporters show opposite polar distributions already in meristems, but their localization becomes refined and restricted upon differentiation. This "central-peripheral" polarity coexists with the apical-basal polarity defined by PIN proteins within the same cells, but utilizes different polarity determinants. Central-peripheral polarity can be already observed in early embryogenesis, where it reveals a cellular polarity within the quiescent center precursor cell. A strict diffusion block between polar domains is common in animals, but had never been described in plants. Yet, its relevance to endodermal function is evident, as central and peripheral membranes of the endodermis face fundamentally different root compartments. Further analysis of endodermal transporter polarity and manipulation of its barrier function will greatly promote our understanding of plant nutrition and stress tolerance in roots.


Asunto(s)
Arabidopsis/citología , Arabidopsis/embriología , Diferenciación Celular , Polaridad Celular , Raíces de Plantas/citología , Actinas/metabolismo , Vesículas Citoplasmáticas/metabolismo , Citoesqueleto/metabolismo , Desarrollo Embrionario , Endocitosis , Meristema/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA