Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35062459

RESUMEN

Digitalization has impacted agricultural and food production systems, and makes application of technologies and advanced data processing techniques in agricultural field possible. Digital farming aims to use available information from agricultural assets to solve several existing challenges for addressing food security, climate protection, and resource management. However, the agricultural sector is complex, dynamic, and requires sophisticated management systems. The digital approaches are expected to provide more optimization and further decision-making supports. Digital twin in agriculture is a virtual representation of a farm with great potential for enhancing productivity and efficiency while declining energy usage and losses. This review describes the state-of-the-art of digital twin concepts along with different digital technologies and techniques in agricultural contexts. It presents a general framework of digital twins in soil, irrigation, robotics, farm machineries, and food post-harvest processing in agricultural field. Data recording, modeling including artificial intelligence, big data, simulation, analysis, prediction, and communication aspects (e.g., Internet of Things, wireless technologies) of digital twin in agriculture are discussed. Digital twin systems can support farmers as a next generation of digitalization paradigm by continuous and real-time monitoring of physical world (farm) and updating the state of virtual world.


Asunto(s)
Agricultura , Inteligencia Artificial , Granjas , Abastecimiento de Alimentos , Tecnología
2.
Sensors (Basel) ; 19(17)2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-31470571

RESUMEN

Posture detection targeted towards providing assessments for the monitoring of health and welfare of pigs has been of great interest to researchers from different disciplines. Existing studies applying machine vision techniques are mostly based on methods using three-dimensional imaging systems, or two-dimensional systems with the limitation of monitoring under controlled conditions. Thus, the main goal of this study was to determine whether a two-dimensional imaging system, along with deep learning approaches, could be utilized to detect the standing and lying (belly and side) postures of pigs under commercial farm conditions. Three deep learning-based detector methods, including faster regions with convolutional neural network features (Faster R-CNN), single shot multibox detector (SSD) and region-based fully convolutional network (R-FCN), combined with Inception V2, Residual Network (ResNet) and Inception ResNet V2 feature extractions of RGB images were proposed. Data from different commercial farms were used for training and validation of the proposed models. The experimental results demonstrated that the R-FCN ResNet101 method was able to detect lying and standing postures with higher average precision (AP) of 0.93, 0.95 and 0.92 for standing, lying on side and lying on belly postures, respectively and mean average precision (mAP) of more than 0.93.


Asunto(s)
Aprendizaje Profundo , Redes Neurales de la Computación , Algoritmos , Animales , Postura , Porcinos
3.
J Food Sci Technol ; 54(8): 2562-2569, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28740314

RESUMEN

In this study, milling recovery, head rice yield, degree of milling and whiteness were utilized to characterize the milling quality of Tarom parboiled rice variety. The parboiled rice was prepared with three soaking temperatures and steaming times. Then the samples were dried to three levels of final moisture contents [8, 10 and 12% (w.b)]. Modeling of process and validating of the results with small dataset are always challenging. So, the aim of this study was to develop models based on the milling quality data in parboiling process by means of multivariate regression and artificial neural network. In order to validate the neural network model with a little dataset, K-fold cross validation method was applied. The ANN structure with one hidden layer and Tansig transfer function by 18 neurons in the hidden layer was selected as the best model in this study. The results indicated that the neural network could model the parboiling process with higher degree of accuracy. This method was a promising procedure to create accuracy and can be used as a reliable model to select the best parameters for the parboiling process with little experiment dataset.

4.
Animals (Basel) ; 11(1)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445636

RESUMEN

Keel bone damage (KBD) can be found in all commercial laying hen flocks with a wide range of 23% to 69% of hens/flock found to be affected in this study. As KBD may be linked with chronic pain and a decrease in mobility, it is a serious welfare problem. An automatic assessment system at the slaughter line could support the detection of KBD and would have the advantage of being standardized and fast scoring including high sample sizes. A 2MP stereo camera combined with an IDS imaging color camera was used for the automatic assessment. A trained human assessor visually scored KBD in defeathered hens during the slaughter process and compared results with further human assessors and automatic recording. In a first step, an algorithm was developed on the basis of assessments of keel status of 2287 hens of different genetics with varying degrees of KBD. In two optimization steps, performance data were calculated, and flock prevalences were determined, which were compared between the assessor and the automatic system. The proposed technique finally reached a sensitivity of 0.95, specificity of 0.77, accuracy of 0.86 and precision of 0.81. In the last optimization step, the automatic system scored on average about 10.5% points lower KBD prevalences than the human assessor. However, a proposed change of scoring system (setting the limit for KBD at 0.5 cm deviation from the straight line) would lower this deviation. We conclude that the developed automatic scoring technique is a reliable and potentially valuable tool for the assessment of KBD.

5.
Animals (Basel) ; 10(11)2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158208

RESUMEN

In search for an early warning system for cannibalism, in this study a newly developed automatic pecking activity detection system was validated and used to investigate how pecking activity changes over the rearing phase and before cannibalistic outbreaks. Data were recorded on two farms, one with female (intact beaks) and the other with male (trimmed beaks) turkeys. A metallic pecking object that was equipped with a microphone was installed in the barn and video monitored. Pecking activity was continuously recorded and fed into a CNN (Convolutional neural network) model that automatically detected pecks. The CNN was validated on both farms, and very satisfactory detection performances were reached (mean sensitivity/recall, specificity, accuracy, precision, and F1-score around 90% or higher). The extent of pecking at the object differed between farms, but the objects were used during the whole recording time, with highest activities in the morning hours. Daily pecking frequencies showed a low downward trend over the rearing period, although on both farms they increased again in week 5 of life. No clear associations between pecking frequencies and in total three cannibalistic outbreaks on farm 1 in one batch could be found. The detection system is usable for further research, but it should be further automated. It should also be further tested under various farm conditions.

6.
Physiol Behav ; 182: 69-76, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28974458

RESUMEN

Tail docking in pigs has the potential for evoking short- as well as long-term physiological and behavioural changes indicative of pain. Nonetheless, the existing scientific literature has thus far provided somewhat inconsistent data on the intensity and the duration of pain based on varying assessment methodologies and different post-procedural observation times. In this report we describe three response stages (immediate, short- and long-term) through the application of vocalisation, behavioural and nociceptive assessments in order to identify changes indicative of potential pain experienced by the piglets. Furthermore, we evaluated the following procedural differences: (1) cautery vs. non-cautery docking; (2) length of tail removal. Sound parameters showed a significantly greater call energy and intensity exhibited by docked vs. sham-docked piglets (P<0.05). Observations of general activity of the animals in a test situation failed to detect a difference among treatments (P>0.05) up to 48h post-tail docking. Similarly, no difference in mechanical nociceptive thresholds indicative of long term pain was observed at 17weeks following neonatal tail docking (P>0.05). The present results highlight the potential for the use of measures of vocalisation to detect peri-procedural changes possibly associated with evoked pain. Nonetheless, activity and nociceptive measures failed to identify post-docking anomalies, suggesting that alternative methodologies need to be implemented to clarify whether tail docking is associated with short- and long-term changes attributable to pain experienced by the piglets.


Asunto(s)
Dolor/fisiopatología , Cola (estructura animal)/cirugía , Vocalización Animal/fisiología , Amputación Quirúrgica/métodos , Amputación Quirúrgica/veterinaria , Animales , Cauterización/efectos adversos , Cauterización/veterinaria , Femenino , Umbral del Dolor/fisiología , Porcinos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA