RESUMEN
BACKGROUND: The application of CRISPR/Cas9 technology in human induced pluripotent stem cells (hiPSC) holds tremendous potential for basic research and cell-based gene therapy. However, the fulfillment of these promises relies on the capacity to efficiently deliver exogenous nucleic acids and harness the repair mechanisms induced by the nuclease activity in order to knock-out or repair targeted genes. Moreover, transient delivery should be preferred to avoid persistent nuclease activity and to decrease the risk of off-target events. We recently developed bacteriophage-chimeric retrovirus-like particles that exploit the properties of bacteriophage coat proteins to package exogenous RNA, and the benefits of lentiviral transduction to achieve highly efficient, non-integrative RNA delivery in human cells. Here, we investigated the potential of bacteriophage-chimeric retrovirus-like particles for the non-integrative delivery of RNA molecules in hiPSC for CRISPR/Cas9 applications. RESULTS: We found that these particles efficiently convey RNA molecules for transient expression in hiPSC, with minimal toxicity and without affecting the cell pluripotency and subsequent differentiation. We then used this system to transiently deliver in a single step the CRISPR-Cas9 components (Cas9 mRNA and sgRNA) to generate gene knockout with high indel rate (up to 85%) at multiple loci. Strikingly, when using an allele-specific sgRNA at a locus harboring compound heterozygous mutations, the targeted allele was not altered by NHEJ/MMEJ, but was repaired at high frequency using the homologous wild type allele, i.e., by interallelic gene conversion. CONCLUSIONS: Our results highlight the potential of bacteriophage-chimeric retrovirus-like particles to efficiently and safely deliver RNA molecules in hiPSC, and describe for the first time genome engineering by gene conversion in hiPSC. Harnessing this DNA repair mechanism could facilitate the therapeutic correction of human genetic disorders in hiPSC.
Asunto(s)
Bacteriófagos , Células Madre Pluripotentes Inducidas , Alelos , Bacteriófagos/genética , Sistemas CRISPR-Cas , Conversión Génica , Edición Génica/métodos , Técnicas de Inactivación de Genes , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , ARN/metabolismo , Retroviridae/genéticaRESUMEN
Airway-liquid interface cultures of primary epithelial cells and of induced pluripotent stem-cell-derived airway epithelial cells (ALI and iALI, respectively) are physiologically relevant models for respiratory virus infection studies because they can mimic the in vivo human bronchial epithelium. Here, we investigated gene expression profiles in human airway cultures (ALI and iALI models), infected or not with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), using our own and publicly available bulk and single-cell transcriptome datasets. SARS-CoV-2 infection significantly increased the expression of interferon-stimulated genes (IFI44, IFIT1, IFIT3, IFI35, IRF9, MX1, OAS1, OAS3 and ISG15) and inflammatory genes (NFKBIA, CSF1, FOSL1, IL32 and CXCL10) by day 4 post-infection, indicating activation of the interferon and immune responses to the virus. Extracellular matrix genes (ITGB6, ITGB1 and GJA1) were also altered in infected cells. Single-cell RNA sequencing data revealed that SARS-CoV-2 infection damaged the respiratory epithelium, particularly mature ciliated cells. The expression of genes encoding intercellular communication and adhesion proteins was also deregulated, suggesting a mechanism to promote shedding of infected epithelial cells. These data demonstrate that ALI/iALI models help to explain the airway epithelium response to SARS-CoV-2 infection and are a key tool for developing COVID-19 treatments.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/genética , Transcriptoma , Células Epiteliales , Epitelio , Interferones/genética , Mucosa RespiratoriaRESUMEN
Chronic obstructive pulmonary disease (COPD) is a common and preventable airway disease causing significant worldwide mortality and morbidity. Lifetime exposure to tobacco smoking and environmental particles are the two major risk factors. Over recent decades, COPD has become a growing public health problem with an increase in incidence. COPD is defined by airflow limitation due to airway inflammation and small airway remodelling coupled to parenchymal lung destruction. Most patients exhibit neutrophil-predominant airway inflammation combined with an increase in macrophages and CD8+ T-cells. Asthma is a heterogeneous chronic inflammatory airway disease. The most studied subtype is type 2 (T2) high eosinophilic asthma, for which there are an increasing number of biologic agents developed. However, both asthma and COPD are complex and share common pathophysiological mechanisms. They are known as overlapping syndromes as approximately 40% of patients with COPD present an eosinophilic airway inflammation. Several studies suggest a putative role of eosinophilia in lung function decline and COPD exacerbation. Recently, pharmacological agents targeting eosinophilic traits in uncontrolled eosinophilic asthma, especially monoclonal antibodies directed against interleukins (IL-5, IL-4, IL-13) or their receptors, have shown promising results. This review examines data on the rationale for such biological agents and assesses efficacy in T2-endotype COPD patients.
RESUMEN
Evidence highlights the concept of multiple trajectories leading to COPD. Early-life events (i.e., in utero lung development) may influence the maximally attained lung function and increase the risk to develop COPD. Human pluripotent stem cells (hiPSC) represent a unique opportunity to model lung development. We generated hiPSC lines from four highly characterized COPD patients with early onset and severe phenotype. Peripheral blood mononuclear cells (PBMCs) were reprogrammed using integration-free Sendai Virus. The cell lines had normal karyotype, expressed pluripotency hallmarks, and differentiated into the three primary germ layers. These lines offer a tool to study early-life origins of COPD.
Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad Pulmonar Obstructiva Crónica , Diferenciación Celular , Reprogramación Celular , Humanos , Leucocitos Mononucleares , Virus SendaiRESUMEN
Mesenchymal cells are an essential cell type because of their role in tissue support, their multilineage differentiation capacities and their potential clinical applications. They play a crucial role during lung development by interacting with airway epithelium, and also during lung regeneration and remodeling after injury. However, much less is known about their function in lung disease. In this review, we discuss the origins of mesenchymal cells during lung development, their crosstalk with the epithelium, and their role in lung diseases, particularly in chronic obstructive pulmonary disease.
Asunto(s)
Pulmón/crecimiento & desarrollo , Células Madre Mesenquimatosas/metabolismo , Organogénesis/genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Remodelación de las Vías Aéreas (Respiratorias)/genética , Diferenciación Celular/genética , Transición Epitelial-Mesenquimal/genética , Epitelio/crecimiento & desarrollo , Epitelio/metabolismo , Epitelio/patología , Humanos , Pulmón/metabolismo , Pulmón/patología , Células Madre Mesenquimatosas/citología , Enfermedad Pulmonar Obstructiva Crónica/patología , Mucosa Respiratoria/crecimiento & desarrollo , Mucosa Respiratoria/metabolismoRESUMEN
Recent advances in genome engineering based on the CRISPR/Cas9 technology have revolutionized our ability to manipulate genomic DNA. Its use in human pluripotent stem cells (hPSCs) has allowed a wide range of mutant cell lines to be obtained at an unprecedented rate. The combination of these two groundbreaking technologies has tremendous potential, from disease modeling to stem cell-based therapies. However, the generation, screening and molecular characterization of these cell lines remain a cumbersome and multi-step endeavor. Here, we propose a pipeline of strategies to efficiently generate, sub-clone, and characterize CRISPR/Cas9-edited hPSC lines in the function of the introduced mutation (indels, point mutations, insertion of large constructs, deletions).