Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pflugers Arch ; 472(7): 865-880, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32601768

RESUMEN

Chronic pain is a global problem affecting up to 20% of the world's population and has a significant economic, social and personal cost to society. Sensory neurons of the dorsal root ganglia (DRG) detect noxious stimuli and transmit this sensory information to regions of the central nervous system (CNS) where activity is perceived as pain. DRG neurons express multiple voltage-gated sodium channels that underlie their excitability. Research over the last 20 years has provided valuable insights into the critical roles that two channels, NaV1.7 and NaV1.9, play in pain signalling in man. Gain of function mutations in NaV1.7 cause painful conditions while loss of function mutations cause complete insensitivity to pain. Only gain of function mutations have been reported for NaV1.9. However, while most NaV1.9 mutations lead to painful conditions, a few are reported to cause insensitivity to pain. The critical roles these channels play in pain along with their low expression in the CNS and heart muscle suggest they are valid targets for novel analgesic drugs.


Asunto(s)
Dolor Crónico/genética , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.9/genética , Animales , Sistema Nervioso Central/patología , Dolor Crónico/patología , Ganglios Espinales/patología , Humanos
2.
J Physiol ; 592(21): 4677-96, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25172946

RESUMEN

Mouse pancreatic ß- and α-cells are equipped with voltage-gated Na(+) currents that inactivate over widely different membrane potentials (half-maximal inactivation (V0.5) at -100 mV and -50 mV in ß- and α-cells, respectively). Single-cell PCR analyses show that both α- and ß-cells have Nav1.3 (Scn3) and Nav1.7 (Scn9a) α subunits, but their relative proportions differ: ß-cells principally express Nav1.7 and α-cells Nav1.3. In α-cells, genetically ablating Scn3a reduces the Na(+) current by 80%. In ß-cells, knockout of Scn9a lowers the Na(+) current by >85%, unveiling a small Scn3a-dependent component. Glucagon and insulin secretion are inhibited in Scn3a(-/-) islets but unaffected in Scn9a-deficient islets. Thus, Nav1.3 is the functionally important Na(+) channel α subunit in both α- and ß-cells because Nav1.7 is largely inactive at physiological membrane potentials due to its unusually negative voltage dependence of inactivation. Interestingly, the Nav1.7 sequence in brain and islets is identical and yet the V0.5 for inactivation is >30 mV more negative in ß-cells. This may indicate the presence of an intracellular factor that modulates the voltage dependence of inactivation.


Asunto(s)
Células Secretoras de Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.3/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Sodio/fisiología , Animales , Regulación de la Expresión Génica , Células Secretoras de Glucagón/efectos de los fármacos , Glucosa , Células HEK293 , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.3/genética , Canal de Sodio Activado por Voltaje NAV1.7/genética , Neurotoxinas/farmacología , Isoformas de Proteínas , Subunidades de Proteína
3.
Hum Mol Genet ; 21(16): 3655-67, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22641814

RESUMEN

Spontaneous neural activity promotes axon growth in many types of developing neurons, including motoneurons. In motoneurons from a mouse model of spinal muscular atrophy (SMA), defects in axonal growth and presynaptic function correlate with a reduced frequency of spontaneous Ca(2+) transients in axons which are mediated by N-type Ca(2+) channels. To characterize the mechanisms that initiate spontaneous Ca(2+) transients, we investigated the role of voltage-gated sodium channels (VGSCs). We found that low concentrations of the VGSC inhibitors tetrodotoxin (TTX) and saxitoxin (STX) reduce the rate of axon growth in cultured embryonic mouse motoneurons without affecting their survival. STX was 5- to 10-fold more potent than TTX and Ca(2+) imaging confirmed that low concentrations of STX strongly reduce the frequency of spontaneous Ca(2+) transients in somatic and axonal regions. These findings suggest that the Na(V)1.9, a VGSC that opens at low thresholds, could act upstream of spontaneous Ca(2+) transients. qPCR from cultured and laser-microdissected spinal cord motoneurons revealed abundant expression of Na(V)1.9. Na(V)1.9 protein is preferentially localized in axons and growth cones. Suppression of Na(V)1.9 expression reduced axon elongation. Motoneurons from Na(V)1.9(-/-) mice showed the reduced axon growth in combination with reduced spontaneous Ca(2+) transients in the soma and axon terminals. Thus, Na(V)1.9 function appears to be essential for activity-dependent axon growth, acting upstream of spontaneous Ca(2+) elevation through voltage-gated calcium channels (VGCCs). Na(V)1.9 activation could therefore serve as a target for modulating axonal regeneration in motoneuron diseases such as SMA in which presynaptic activity of VGCCs is reduced.


Asunto(s)
Axones/metabolismo , Calcio/metabolismo , Neuronas Motoras/metabolismo , Canal de Sodio Activado por Voltaje NAV1.9/metabolismo , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Conos de Crecimiento/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas Motoras/efectos de los fármacos , Atrofia Muscular Espinal/metabolismo , Canal de Sodio Activado por Voltaje NAV1.9/genética , Conejos , Saxitoxina/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Médula Espinal/citología , Médula Espinal/metabolismo , Tetrodotoxina/farmacología , Canales de Sodio Activados por Voltaje/metabolismo
4.
Mol Pain ; 8: 21, 2012 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-22449024

RESUMEN

BACKGROUND: Members of the degenerin/epithelial (DEG/ENaC) sodium channel family are mechanosensors in C elegans, and Nav1.7 and Nav1.8 voltage-gated sodium channel knockout mice have major deficits in mechanosensation. ß and γENaC sodium channel subunits are present with acid sensing ion channels (ASICs) in mammalian sensory neurons of the dorsal root ganglia (DRG). The extent to which epithelial or voltage-gated sodium channels are involved in transduction of mechanical stimuli is unclear. RESULTS: Here we show that deleting ß and γENaC sodium channels in sensory neurons does not result in mechanosensory behavioural deficits. We had shown previously that Nav1.7/Nav1.8 double knockout mice have major deficits in behavioural responses to noxious mechanical pressure. However, all classes of mechanically activated currents in DRG neurons are unaffected by deletion of the two sodium channels. In contrast, the ability of Nav1.7/Nav1.8 knockout DRG neurons to generate action potentials is compromised with 50% of the small diameter sensory neurons unable to respond to electrical stimulation in vitro. CONCLUSION: Behavioural deficits in Nav1.7/Nav1.8 knockout mice reflects a failure of action potential propagation in a mechanosensitive set of sensory neurons rather than a loss of primary transduction currents. DEG/ENaC sodium channels are not mechanosensors in mouse sensory neurons.


Asunto(s)
Mecanotransducción Celular/fisiología , Células Receptoras Sensoriales/metabolismo , Canales de Sodio/metabolismo , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Animales , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Mecanotransducción Celular/genética , Ratones , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.7 , Canal de Sodio Activado por Voltaje NAV1.8 , Canales de Sodio/genética
5.
J Neurosci ; 30(11): 3983-94, 2010 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-20237269

RESUMEN

Small unmyelinated sensory neurons classified as nociceptors are divided into two subpopulations based on phenotypic differences, including expression of neurotrophic factor receptors. Approximately half of unmyelinated nociceptors express the NGF receptor TrkA, and half express the GDNF family ligand (GFL) receptor Ret. The function of NGF/TrkA signaling in the TrkA population of nociceptors has been extensively studied, and NGF/TrkA signaling is a well established mediator of pain. The GFLs are analgesic in models of neuropathic pain emphasizing the importance of understanding the physiological function of GFL/Ret signaling in nociceptors. However, perinatal lethality of Ret-null mice has precluded the study of the physiological role of GFL/Ret signaling in the survival, maintenance, and function of nociceptors in viable mice. We deleted Ret exclusively in nociceptors by crossing nociceptor-specific Na(v)1.8 Cre and Ret conditional mice to produce Ret-Na(v)1.8 conditional knock-out (CKO) mice. Loss of Ret exclusively in nociceptors results in a reduction in nociceptor number and size, indicating that Ret signaling is important for the survival and trophic support of these cells. Ret-Na(v)1.8 CKO mice exhibit reduced epidermal innervation but normal central projections. In addition, Ret-Na(v)1.8 CKO mice have increased sensitivity to cold and increased formalin-induced pain, demonstrating that Ret signaling modulates the function of nociceptors in vivo. Enhanced inflammation-induced pain may be mediated by decreased prostatic acid phosphatase (PAP), as PAP levels are markedly reduced in Ret-Na(v)1.8 CKO mice. The results of this study identify the physiological role of endogenous Ret signaling in the survival and function of nociceptors.


Asunto(s)
Nociceptores/fisiología , Proteínas Proto-Oncogénicas c-ret/fisiología , Transducción de Señal/fisiología , Animales , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Femenino , Formaldehído/administración & dosificación , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.8 , Nociceptores/citología , Dimensión del Dolor/métodos , Proteínas Proto-Oncogénicas c-ret/deficiencia , Proteínas Proto-Oncogénicas c-ret/genética , Transducción de Señal/genética , Canales de Sodio/deficiencia , Canales de Sodio/genética
6.
J Neurosci ; 30(32): 10860-71, 2010 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-20702715

RESUMEN

To examine the role of small RNAs in peripheral pain pathways, we deleted the enzyme Dicer in mouse postmitotic damage-sensing neurons. We used a Nav1.8-Cre mouse to target those nociceptors important for inflammatory pain. The conditional null mice were healthy with a normal number of sensory neurons and normal acute pain thresholds. Behavioral studies showed that inflammatory pain was attenuated or abolished. Inflammatory mediators failed to enhance excitability of Nav1.8+ sensory neurons from null mutant mice. Acute noxious input into the dorsal horn of the spinal cord was apparently normal, but the increased input associated with inflammatory pain measured using c-Fos staining was diminished. Microarray and quantitative real-time reverse-transcription PCR (qRT-PCR) analysis showed that Dicer deletion lead to the upregulation of many broadly expressed mRNA transcripts in dorsal root ganglia. By contrast, nociceptor-associated mRNA transcripts (e.g., Nav1.8, P2xr3, and Runx-1) were downregulated, resulting in lower levels of protein and functional expression. qRT-PCR analysis also showed lowered levels of expression of nociceptor-specific pre-mRNA transcripts. MicroRNA microarray and deep sequencing identified known and novel nociceptor microRNAs in mouse Nav1.8+ sensory neurons that may regulate nociceptor gene expression.


Asunto(s)
Regulación de la Expresión Génica/genética , Nociceptores/metabolismo , Umbral del Dolor/fisiología , Dolor/fisiopatología , Células Receptoras Sensoriales/fisiología , Canales de Sodio/metabolismo , Análisis de Varianza , Animales , Cerebelo/citología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , ARN Helicasas DEAD-box/deficiencia , Modelos Animales de Enfermedad , Endorribonucleasas/deficiencia , Femenino , Adyuvante de Freund/efectos adversos , Ganglios Espinales/metabolismo , Perfilación de la Expresión Génica/métodos , Masculino , Ratones , Ratones Noqueados , MicroARNs/fisiología , Canal de Sodio Activado por Voltaje NAV1.8 , Proteínas del Tejido Nervioso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Dolor/inducido químicamente , Dolor/genética , Dimensión del Dolor , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X3 , Ribonucleasa III , Canales de Sodio/deficiencia , Canales de Sodio/genética , Médula Espinal/fisiopatología , Factores de Tiempo
7.
J Neurosci ; 30(6): 2138-49, 2010 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-20147541

RESUMEN

Chronic pain associated with inflammation is a common clinical problem, and the underlying mechanisms have only begun to be unraveled. GRK2 regulates cellular signaling by promoting G-protein-coupled receptor (GPCR) desensitization and direct interaction with downstream kinases including p38. The aim of this study was to determine the contribution of GRK2 to regulation of inflammatory pain and to unravel the underlying mechanism. GRK2(+/-) mice with an approximately 50% reduction in GRK2 developed increased and markedly prolonged thermal hyperalgesia and mechanical allodynia after carrageenan-induced paw inflammation or after intraplantar injection of the GPCR-binding chemokine CCL3. The effect of reduced GRK2 in specific cells was investigated using Cre-Lox technology. Carrageenan- or CCL3-induced hyperalgesia was increased but not prolonged in mice with decreased GRK2 only in Na(v)1.8 nociceptors. In vitro, reduced neuronal GRK2 enhanced CCL3-induced TRPV1 sensitization. In vivo, CCL3-induced acute hyperalgesia in GRK2(+/-) mice was mediated via TRPV1. Reduced GRK2 in microglia/monocytes only was required and sufficient to transform acute carrageenan- or CCL3-induced hyperalgesia into chronic hyperalgesia. Chronic hyperalgesia in GRK2(+/-) mice was associated with ongoing microglial activation and increased phospho-p38 and tumor necrosis factor alpha (TNF-alpha) in the spinal cord. Inhibition of spinal cord microglial, p38, or TNF-alpha activity by intrathecal administration of specific inhibitors reversed ongoing hyperalgesia in GRK2(+/-) mice. Microglia/macrophage GRK2 expression was reduced in the lumbar ipsilateral spinal cord during neuropathic pain, underlining the pathophysiological relevance of microglial GRK2. Thus, we identified completely novel cell-specific roles of GRK2 in regulating acute and chronic inflammatory hyperalgesia.


Asunto(s)
Quinasa 2 del Receptor Acoplado a Proteína-G/fisiología , Dolor/enzimología , Dolor/fisiopatología , Animales , Astrocitos/metabolismo , Células Cultivadas , Quimiocina CCL3/farmacología , Quimiocina CCL3/fisiología , Femenino , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Hiperalgesia/enzimología , Hiperalgesia/fisiopatología , Inflamación/enzimología , Inflamación/fisiopatología , Macrófagos/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/enzimología , Dolor/inmunología , Enfermedades del Sistema Nervioso Periférico/enzimología , Enfermedades del Sistema Nervioso Periférico/inmunología , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales/enzimología , Médula Espinal/enzimología , Canales Catiónicos TRPV/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología
8.
J Neurosci ; 29(24): 7667-78, 2009 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-19535578

RESUMEN

Neuregulin-1 has a key role in mediating signaling between axons and Schwann cells during development. A limitation to studying its role in adulthood is the embryonic lethality of global Nrg1 gene deletion. We used the Cre-loxP system to generate transgenic mice in which neuregulin-1 is conditionally ablated in the majority of small-diameter and a proportion of large-diameter sensory neurons that have axons conducting in the C- and Adelta-fiber range, respectively. Sensory neuron-specific neuregulin-1 ablation resulted in abnormally large Remak bundles with axons clustered in "polyaxonal" pockets. The total number of axons in the sural nerve was unchanged, but a greater proportion was unmyelinated. In addition, we observed large-diameter axons that were in a 1:1 relationship with Schwann cells, surrounded by a basal lamina but not myelinated. There was no evidence of DRG or Schwann cell death; the markers of different DRG cell populations and cutaneous innervation were unchanged. These anatomical changes were reflected in a slowing of conduction velocity at the lower end of the A-fiber conduction velocity range and a new population of more rapidly conducting C-fibers that are likely to represent large-diameter axons that have failed to myelinate. Conditional neuregulin-1 ablation resulted in a reduced sensitivity to noxious mechanical stimuli. These findings emphasize the importance of neuregulin-1 in mediating the signaling between axons and both myelinating and nonmyelinating Schwann cells required for normal sensory function. Sensory neuronal survival and axonal maintenance, however, are not dependent on axon-derived neuregulin-1 signaling in adulthood.


Asunto(s)
Axones/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Umbral del Dolor/fisiología , Sensación/fisiología , Células Receptoras Sensoriales/citología , Transducción de Señal/fisiología , Análisis de Varianza , Animales , Animales Recién Nacidos , Axones/ultraestructura , Péptido Relacionado con Gen de Calcitonina/metabolismo , Células Cultivadas , Estimulación Eléctrica , Embrión de Mamíferos , Ganglios Espinales/citología , Regulación de la Expresión Génica/genética , Etiquetado Corte-Fin in Situ/métodos , Indoles , Lectinas/metabolismo , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión/métodos , Canal de Sodio Activado por Voltaje NAV1.8 , Fibras Nerviosas/fisiología , Proteínas del Tejido Nervioso/deficiencia , Conducción Nerviosa/efectos de los fármacos , Conducción Nerviosa/genética , Neurregulina-1 , Proteínas de Neurofilamentos/metabolismo , Neuroglía/fisiología , Dimensión del Dolor/métodos , Estimulación Física/métodos , Tiempo de Reacción/genética , Células de Schwann/metabolismo , Células de Schwann/fisiología , Sensación/genética , Transducción de Señal/genética , Piel/inervación , Canales de Sodio/genética , Nervio Sural/patología , Nervio Sural/ultraestructura
9.
Mol Pain ; 6: 77, 2010 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-21059214

RESUMEN

BACKGROUND: EphB receptors and their ephrin-B ligands play an important role in nervous system development, as well as synapse formation and plasticity in the adult brain. Recent studies show that intrathecal treatment with EphB-receptor activator ephrinB2-Fc induced thermal hyperalgesia and mechanical allodynia in rat, indicating that ephrin-B2 in small dorsal root ganglia (DRG) neurons and EphB receptors in the spinal cord modulate pain processing. To examine the role of ephrin-B2 in peripheral pain pathways, we deleted ephrin-B2 in Nav1.8+ nociceptive sensory neurons with the Cre-loxP system. Sensory neuron numbers and terminals were examined using neuronal makers. Pain behavior in acute, inflammatory and neuropathic pain models was assessed in the ephrin-B2 conditional knockout (CKO) mice. We also investigated the c-Fos expression and NMDA receptor NR2B phosphorylation in ephrin-B2 CKO mice and littermate controls. RESULTS: The ephrin-B2 CKO mice were healthy with no sensory neuron loss. However, pain-related behavior was substantially altered. Although acute pain behavior and motor co-ordination were normal, inflammatory pain was attenuated in ephrin-B2 mutant mice. Complete Freund's adjuvant (CFA)-induced mechanical hyperalgesia was halved. Formalin-induced pain behavior was attenuated in the second phase, and this correlated with diminished tyrosine phosphorylation of N-methyl-D-aspartic acid (NMDA) receptor subunit NR2B in the dorsal horn. Thermal hyperalgesia and mechanical allodynia were significantly reduced in the Seltzer model of neuropathic pain. CONCLUSIONS: Presynaptic ephrin-B2 expression thus plays an important role in regulating inflammatory pain through the regulation of synaptic plasticity in the dorsal horn and is also involved in the pathogenesis of some types of neuropathic pain.


Asunto(s)
Efrina-B2/metabolismo , Inflamación/complicaciones , Inflamación/metabolismo , Neuralgia/complicaciones , Neuralgia/metabolismo , Nociceptores/metabolismo , Factor de Transcripción Activador 3/metabolismo , Enfermedad Aguda , Animales , Conducta Animal , Supervivencia Celular , Modelos Animales de Enfermedad , Exones/genética , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Eliminación de Gen , Proteína Ácida Fibrilar de la Glía/metabolismo , Inflamación/patología , Integrasas/metabolismo , Ratones , Microglía/metabolismo , Microglía/patología , Canal de Sodio Activado por Voltaje NAV1.8 , Neuralgia/patología , Neuronas Aferentes/metabolismo , Neuronas Aferentes/patología , Nociceptores/patología , Fosforilación , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Canales de Sodio/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología
10.
Learn Mem ; 16(10): 635-44, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19794189

RESUMEN

The NMDA receptor (NMDAR) subunit GluN1 is an obligatory component of NMDARs without a known functional homolog and is expressed in almost every neuronal cell type. The NMDAR system is a coincidence detector with critical roles in spatial learning and synaptic plasticity. Its coincidence detection property is crucial for the induction of hippocampal long-term potentiation (LTP). We have generated a mutant mouse model expressing a hypomorph of the Grin1(N598R) allele, which leads to a minority (about 10%) of coincidence detection-impaired NMDARs. Surprisingly, these animals revealed specific functional changes in the dentate gyrus (DG) of the hippocampal formation. Early LTP was expressed normally in area CA1 in vivo, but was completely suppressed at perforant path-granule cell synapses in the DG. In addition, there was a pronounced reduction in the amplitude of the evoked population spike in the DG. These specific changes were accompanied by behavioral impairments in spatial recognition, spatial learning, reversal learning, and retention. Our data show that minor changes in GluN1-dependent NMDAR physiology can cause dramatic consequences in synaptic signaling in a subregion-specific fashion despite the nonredundant nature of the GluN1 gene and its global expression.


Asunto(s)
Conducta Animal/fisiología , Hipocampo/fisiología , Aprendizaje/fisiología , Potenciación a Largo Plazo/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Western Blotting , Perfilación de la Expresión Génica , Inmunohistoquímica , Ratones , Ratones Mutantes , Mutación , Plasticidad Neuronal/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores de N-Metil-D-Aspartato/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Pain ; 161(5): 1100-1108, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31929383

RESUMEN

Alleviating chronic pain is challenging, due to lack of drugs that effectively inhibit nociceptors without off-target effects on motor or central neurons. Dorsal root ganglia (DRG) contain nociceptive and non-nociceptive neurons. Drug screening on cultured DRG neurons, rather than cell lines, allows for the identification of drugs most potent on nociceptors with no effects on non-nociceptors (as a proxy for unwanted side effects on central nervous system and motor neurons). However, screening using DRG neurons is currently a low-throughput process, and there is a need for assays to speed this process for analgesic drug discovery. We previously showed that veratridine elicits distinct response profiles in sensory neurons. Here, we show evidence that a veratridine-based calcium assay allows for an unbiased and efficient assessment of a drug effect on nociceptors (targeted neurons) and non-nociceptors (nontargeted neurons). We confirmed the link between the oscillatory profile and nociceptors, and the slow-decay profile and non-nociceptors using 3 transgenic mouse lines of known pain phenotypes. We used the assay to show that blockers for Nav1.7 and Nav1.8 channels, which are validated targets for analgesics, affect non-nociceptors at concentrations needed to effectively inhibit nociceptors. However, a combination of low doses of both blockers had an additive effect on nociceptors without a significant effect on non-nociceptors, indicating that the assay can also be used to screen for combinations of existing or novel drugs for the greatest selective inhibition of nociceptors.


Asunto(s)
Células Receptoras Sensoriales , Analgésicos/farmacología , Animales , Ganglios Espinales , Ratones , Ratones Endogámicos C57BL , Nociceptores
12.
Neuron ; 47(6): 787-93, 2005 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16157274

RESUMEN

A major unanswered question concerning "pain" circuitry is the extent to which different populations of primary afferent nociceptor engage the same or different ascending pathways. In the present study, we followed the transneuronal transport of a genetically expressed lectin tracer, wheat germ agglutinin, in Na(V)1.8-expressing nociceptors of the nonpeptide class. We found that interneurons of lamina II are at the origin of the major ascending circuits targeted by the nonpeptide nociceptors. These interneurons contact lamina V projection neurons, which in turn predominantly target fourth-order neurons in the amygdala, hypothalamus, bed nucleus of the stria terminalis, and to a remarkable extent, the globus pallidus. These circuits differ greatly from the lamina I-based projection that is targeted by the peptide class of nociceptors. Our results indicate that parallel, perhaps independent pain pathways arise from different nociceptor classes and that motor as well as limbic targets predominate in the circuits that originate from the nonpeptide population.


Asunto(s)
Vías Aferentes/metabolismo , Red Nerviosa/metabolismo , Neuronas Aferentes/metabolismo , Nociceptores/metabolismo , Dolor/metabolismo , Médula Espinal/citología , Vías Aferentes/fisiopatología , Animales , Encéfalo/anatomía & histología , Encéfalo/fisiopatología , Recuento de Células/métodos , Técnica del Anticuerpo Fluorescente/métodos , Interneuronas/metabolismo , Ratones , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.8 , Red Nerviosa/fisiopatología , Redes Neurales de la Computación , Nociceptores/fisiología , Parvalbúminas/metabolismo , Canales de Sodio/genética , Aglutininas del Germen de Trigo/genética , Aglutininas del Germen de Trigo/metabolismo
13.
J Physiol ; 586(4): 1077-87, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18096591

RESUMEN

Persistent tetrodotoxin-resistant (TTX-r) sodium currents up-regulated by intracellular GTP have been invoked as the site of action of peripheral inflammatory mediators that lower pain thresholds, and ascribed to the Na(V)1.9 sodium channel. Here we describe the properties of a global knock-out of Na(V)1.9 produced by replacing exons 4 and 5 in SCN11A with a neomycin resistance cassette, deleting the domain 1 voltage sensor and introducing a frameshift mutation. Recordings from small (< 25 microm apparent diameter) sensory neurones indicated that channel loss eliminates a TTX-r persistent current. Intracellular dialysis of GTP-gamma-S did not cause an up-regulation of persistent Na(+) current in Na(V)1.9-null neurones and the concomitant negative shift in voltage-threshold seen in wild-type and heterozygous neurones. Heterologous hNa(V)1.9 expression in Na(V)1.9 knock-out sensory neurones confirms that the human clone can restore the persistent Na(+) current. Taken together, these findings demonstrate that Na(V)1.9 underlies the G-protein pathway-regulated TTX-r persistent Na(+) current in small diameter sensory neurones that may drive spontaneous discharge in nociceptive nerve fibres during inflammation.


Asunto(s)
Ganglios Espinales/metabolismo , Guanosina Trifosfato/metabolismo , Neuronas Aferentes/metabolismo , Neuropéptidos/metabolismo , Nociceptores/metabolismo , Canales de Sodio/metabolismo , Sodio/metabolismo , Potenciales de Acción/fisiología , Animales , Secuencia de Bases , Células Cultivadas , Exones/genética , Ganglios Espinales/citología , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.9 , Neuronas/citología , Neuronas/metabolismo , Neuronas Aferentes/citología , Neuropéptidos/genética , Técnicas de Placa-Clamp , Canales de Sodio/genética , Transfección
14.
Pain ; 159(8): 1641-1651, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29697531

RESUMEN

Voltage-gated potassium (Kv) channels are increasingly recognised as key regulators of nociceptive excitability. Kcns1 is one of the first potassium channels to be associated with neuronal hyperexcitability and mechanical sensitivity in the rat, as well as pain intensity and risk of developing chronic pain in humans. Here, we show that in mice, Kcns1 is predominantly expressed in the cell body and axons of myelinated sensory neurons positive for neurofilament-200, including Aδ-fiber nociceptors and low-threshold Aß mechanoreceptors. In the spinal cord, Kcns1 was detected in laminae III to V of the dorsal horn where most sensory A fibers terminate, as well as large motoneurons of the ventral horn. To investigate Kcns1 function specifically in the periphery, we generated transgenic mice in which the gene is deleted in all sensory neurons but retained in the central nervous system. Kcns1 ablation resulted in a modest increase in basal mechanical pain, with no change in thermal pain processing. After neuropathic injury, Kcns1 KO mice exhibited exaggerated mechanical pain responses and hypersensitivity to both noxious and innocuous cold, consistent with increased A-fiber activity. Interestingly, Kcns1 deletion also improved locomotor performance in the rotarod test, indicative of augmented proprioceptive signalling. Our results suggest that restoring Kcns1 function in the periphery may be of some use in ameliorating mechanical and cold pain in chronic states.


Asunto(s)
Neuralgia/metabolismo , Umbral del Dolor/fisiología , Células del Asta Posterior/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Ratones , Ratones Noqueados , Destreza Motora/fisiología , Neuralgia/genética , Estimulación Física , Canales de Potasio con Entrada de Voltaje/genética , Propiocepción/fisiología
15.
Pain ; 159(3): 496-506, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29194125

RESUMEN

The sodium channel NaV1.7 contributes to action potential (AP) generation and propagation. Loss-of-function mutations in patients lead to congenital indifference to pain, though it remains unclear where on the way from sensory terminals to central nervous system the signalling is disrupted. We confirm that conditional deletion of NaV1.7 in advillin-expressing sensory neurons leads to impaired heat and mechanical nociception in behavioural tests. With single-fiber recordings from isolated skin, we found (1) a significantly lower prevalence of heat responsiveness to normally mechanosensitive C-fibers, although (2) the rare heat responses seemed quite vigorous, and (3) heat-induced calcitonin gene-related peptide release was normal. In biophysical respects, although electrical excitability, rheobase, and chronaxy were normal, (4) axonal conduction velocity was 20% slower than in congenic wild-type mice (5) and when challenged with double pulses (<100 milliseconds interval), the second AP showed more pronounced latency increase (6). On prolonged electrical stimulation at 2 Hz, (7) activity-dependent slowing of nerve fiber conduction was markedly less, and (8) was less likely to result in conduction failure of the mutant single fibers. Finally, recording of compound APs from the whole saphenous nerve confirmed slower conduction and less activity-dependent slowing as well as the functional absence of a large subpopulation of C-fibers (9) in conditional NaV1.7 knockouts. In conclusion, the clear deficits in somatic primary afferent functions shown in our study may be complemented by previously reported synaptic dysfunction and opioidergic inhibition, together accounting for the complete insensitivity to pain in the human mutants lacking NaV1.7.


Asunto(s)
Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.7/genética , Dolor/genética , Potenciales de Acción/genética , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Modelos Animales de Enfermedad , Ganglios Espinales/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Fibras Nerviosas Amielínicas/fisiología , Dolor/fisiopatología , Dimensión del Dolor/métodos , Umbral del Dolor/fisiología , Estimulación Física/efectos adversos , Células Receptoras Sensoriales/fisiología
16.
J Neurosci ; 26(41): 10499-507, 2006 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-17035534

RESUMEN

The S100 family protein p11 (S100A10, annexin 2 light chain) is involved in the trafficking of the voltage-gated sodium channel Na(V)1.8, TWIK-related acid-sensitive K+ channel (TASK-1), the ligand-gated ion channels acid-sensing ion channel 1a (ASIC1a) and transient receptor potential vanilloid 5/6 (TRPV5/V6), as well as 5-hydroxytryptamine receptor 1B (5-HT1B), a G-protein-coupled receptor. To evaluate the role of p11 in peripheral pain pathways, we generated a loxP-flanked (floxed) p11 mouse and used the Cre-loxP recombinase system to delete p11 exclusively from nociceptive primary sensory neurons in mice. p11-null neurons showed deficits in the expression of Na(V)1.8, but not of annexin 2. Damage-sensing primary neurons from these animals show a reduced tetrodotoxin-resistant sodium current density, consistent with a loss of membrane-associated Na(V)1.8. Noxious coding in wide-dynamic-range neurons in the dorsal horn was markedly compromised. Acute pain behavior was attenuated in certain models, but no deficits in inflammatory pain were observed. A significant deficit in neuropathic pain behavior was also apparent in the conditional-null mice. These results confirm an important role for p11 in nociceptor function.


Asunto(s)
Anexina A2/deficiencia , Anexina A2/genética , Potenciales Evocados Somatosensoriales/fisiología , Eliminación de Gen , Nociceptores/fisiología , Dimensión del Dolor/métodos , Proteínas S100/deficiencia , Proteínas S100/genética , Animales , Anexina A2/biosíntesis , Células Cultivadas , Ganglios Espinales/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas S100/biosíntesis
17.
Sci Rep ; 7: 45221, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28338073

RESUMEN

Nociceptors are a subpopulation of dorsal root ganglia (DRG) neurons that detect noxious stimuli and signal pain. Veratridine (VTD) is a voltage-gated sodium channel (VGSC) modifier that is used as an "agonist" in functional screens for VGSC blockers. However, there is very little information on VTD response profiles in DRG neurons and how they relate to neuronal subtypes. Here we characterised VTD-induced calcium responses in cultured mouse DRG neurons. Our data shows that the heterogeneity of VTD responses reflects distinct subpopulations of sensory neurons. About 70% of DRG neurons respond to 30-100 µM VTD. We classified VTD responses into four profiles based upon their response shape. VTD response profiles differed in their frequency of occurrence and correlated with neuronal size. Furthermore, VTD response profiles correlated with responses to the algesic markers capsaicin, AITC and α, ß-methylene ATP. Since VTD response profiles integrate the action of several classes of ion channels and exchangers, they could act as functional "reporters" for the constellation of ion channels/exchangers expressed in each sensory neuron. Therefore our findings are relevant to studies and screens using VTD to activate DRG neurons.


Asunto(s)
Señalización del Calcio , Ganglios Espinales/efectos de los fármacos , Células Receptoras Sensoriales/efectos de los fármacos , Veratridina/farmacología , Animales , Capsaicina/farmacología , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Masculino , Moduladores del Transporte de Membrana/farmacología , Ratones , Nocicepción , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/fisiología
18.
Pain ; 158(1): 58-67, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27780178

RESUMEN

The upregulation of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 has previously been associated with inflammatory hyperalgesia. Na1.9 knockout (KO) mice, however, did not seem insensitive in conventional tests of acute nociception. Using electrophysiological, neurochemical, and behavioral techniques, we now show NaV1.9-null mice exhibit impaired mechanical and thermal sensory capacities and reduced electrical excitability of nociceptors. In single-fiber recordings from isolated skin, the electrical threshold of NaV1.9 KO C fibers was elevated by 55% and the median von Frey threshold was 32 mN in contrast to 8 mN in wild types (WTs). The prevalence of C mechano-heat-sensitive (CMH) fibers was only 25.6% in NaV1.9 KO animals compared to 75.8% in the WT group, and the heat threshold of these CMH fibers was 40.4°C in the control vs 44°C in the KO group. Compound action potential recordings from isolated sciatic nerve segments of NaV1.9 KO mice revealed lower activity-induced slowing of conduction velocity upon noxious heat stimulation: 8% vs 30% in WTs. Heat-induced calcitonin gene-related peptide release from the skin was less in the KO than in the WT group. The reduced noxious heat sensitivity was finally confirmed with the Hargreaves test using 2 rates of radiant heating of the plantar hind paws. In conclusion, NaV1.9 presumably contributes to acute thermal and mechanical nociception in mice, most likely through increasing the excitability but probably also by amplifying receptor potentials irrespective of the stimulus modality.


Asunto(s)
Hiperalgesia , Canal de Sodio Activado por Voltaje NAV1.9/deficiencia , Fibras Nerviosas Amielínicas/fisiología , Nociceptores/fisiología , Potenciales de Acción/genética , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Femenino , Calor/efectos adversos , Hiperalgesia/genética , Hiperalgesia/patología , Hiperalgesia/fisiopatología , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.9/genética , Conducción Nerviosa/genética , Umbral del Dolor/fisiología , Estimulación Física/efectos adversos , Piel/inervación
19.
Mol Pain ; 2: 33, 2006 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-17052333

RESUMEN

Changes in sodium channel activity and neuronal hyperexcitability contribute to neuropathic pain, a major clinical problem. There is strong evidence that the re-expression of the embryonic voltage-gated sodium channel subunit Nav1.3 underlies neuronal hyperexcitability and neuropathic pain. Here we show that acute and inflammatory pain behaviour is unchanged in global Nav1.3 mutant mice. Surprisingly, neuropathic pain also developed normally in the Nav1.3 mutant mouse. To rule out any genetic compensation mechanisms that may have masked the phenotype, we investigated neuropathic pain in two conditional Nav1.3 mutant mouse lines. We used Nav1.8-Cre mice to delete Nav1.3 in nociceptors at E14 and NFH-Cre mice to delete Nav1.3 throughout the nervous system postnatally. Again normal levels of neuropathic pain developed after nerve injury in both lines. Furthermore, ectopic discharges from damaged nerves were unaffected by the absence of Nav1.3 in global knock-out mice. Our data demonstrate that Nav1.3 is neither necessary nor sufficient for the development of nerve-injury related pain.


Asunto(s)
Eliminación de Gen , Neuronas Aferentes/patología , Dolor/patología , Dolor/fisiopatología , Canales de Sodio/deficiencia , Canales de Sodio/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Exones/genética , Femenino , Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.3 , Neuronas Aferentes/fisiología , Análisis de Secuencia de ADN , Canales de Sodio/química , Canales de Sodio/metabolismo
20.
Toxins (Basel) ; 8(3)2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26999206

RESUMEN

Loss-of-function mutations of Na(V)1.7 lead to congenital insensitivity to pain, a rare condition resulting in individuals who are otherwise normal except for the inability to sense pain, making pharmacological inhibition of Na(V)1.7 a promising therapeutic strategy for the treatment of pain. We characterized a novel mouse model of Na(V)1.7-mediated pain based on intraplantar injection of the scorpion toxin OD1, which is suitable for rapid in vivo profiling of Na(V)1.7 inhibitors. Intraplantar injection of OD1 caused spontaneous pain behaviors, which were reversed by co-injection with Na(V)1.7 inhibitors and significantly reduced in Na(V)1.7(-/-) mice. To validate the use of the model for profiling Na(V)1.7 inhibitors, we determined the Na(V) selectivity and tested the efficacy of the reported Na(V)1.7 inhibitors GpTx-1, PF-04856264 and CNV1014802 (raxatrigine). GpTx-1 selectively inhibited Na(V)1.7 and was effective when co-administered with OD1, but lacked efficacy when delivered systemically. PF-04856264 state-dependently and selectively inhibited Na(V)1.7 and significantly reduced OD1-induced spontaneous pain when delivered locally and systemically. CNV1014802 state-dependently, but non-selectively, inhibited Na(V) channels and was only effective in the OD1 model when delivered systemically. Our novel model of Na(V)1.7-mediated pain based on intraplantar injection of OD1 is thus suitable for the rapid in vivo characterization of the analgesic efficacy of Na(V)1.7 inhibitors.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7/fisiología , Dolor/tratamiento farmacológico , Péptidos/uso terapéutico , Éteres Fenílicos/uso terapéutico , Prolina/análogos & derivados , Venenos de Escorpión/uso terapéutico , Bloqueadores de los Canales de Sodio/uso terapéutico , Venenos de Araña/uso terapéutico , Analgésicos , Animales , Conducta Animal/efectos de los fármacos , Células CHO , Cricetulus , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.7/genética , Fibras Nerviosas/efectos de los fármacos , Fibras Nerviosas/fisiología , Dolor/inducido químicamente , Prolina/uso terapéutico , Vena Safena/inervación , Sulfonamidas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA