Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
N Engl J Med ; 382(6): 545-553, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32023374

RESUMEN

BACKGROUND: Anti-CD19 chimeric antigen receptor (CAR) T-cell therapy has shown remarkable clinical efficacy in B-cell cancers. However, CAR T cells can induce substantial toxic effects, and the manufacture of the cells is complex. Natural killer (NK) cells that have been modified to express an anti-CD19 CAR have the potential to overcome these limitations. METHODS: In this phase 1 and 2 trial, we administered HLA-mismatched anti-CD19 CAR-NK cells derived from cord blood to 11 patients with relapsed or refractory CD19-positive cancers (non-Hodgkin's lymphoma or chronic lymphocytic leukemia [CLL]). NK cells were transduced with a retroviral vector expressing genes that encode anti-CD19 CAR, interleukin-15, and inducible caspase 9 as a safety switch. The cells were expanded ex vivo and administered in a single infusion at one of three doses (1×105, 1×106, or 1×107 CAR-NK cells per kilogram of body weight) after lymphodepleting chemotherapy. RESULTS: The administration of CAR-NK cells was not associated with the development of cytokine release syndrome, neurotoxicity, or graft-versus-host disease, and there was no increase in the levels of inflammatory cytokines, including interleukin-6, over baseline. The maximum tolerated dose was not reached. Of the 11 patients who were treated, 8 (73%) had a response; of these patients, 7 (4 with lymphoma and 3 with CLL) had a complete remission, and 1 had remission of the Richter's transformation component but had persistent CLL. Responses were rapid and seen within 30 days after infusion at all dose levels. The infused CAR-NK cells expanded and persisted at low levels for at least 12 months. CONCLUSIONS: Among 11 patients with relapsed or refractory CD19-positive cancers, a majority had a response to treatment with CAR-NK cells without the development of major toxic effects. (Funded by the M.D. Anderson Cancer Center CLL and Lymphoma Moonshot and the National Institutes of Health; ClinicalTrials.gov number, NCT03056339.).


Asunto(s)
Antígenos CD19 , Células Asesinas Naturales/trasplante , Leucemia Linfocítica Crónica de Células B/terapia , Linfoma no Hodgkin/terapia , Receptores Quiméricos de Antígenos/antagonistas & inhibidores , Anciano , Aloinjertos , Tratamiento Basado en Trasplante de Células y Tejidos , Femenino , Sangre Fetal , Vectores Genéticos , Humanos , Células Asesinas Naturales/inmunología , Leucemia Linfocítica Crónica de Células B/inmunología , Linfoma no Hodgkin/inmunología , Masculino , Persona de Mediana Edad , Inducción de Remisión/métodos , Retroviridae/genética , Acondicionamiento Pretrasplante
2.
Front Immunol ; 8: 1773, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29379494

RESUMEN

Chronic lymphocytic leukemia (CLL) cells possess regulatory functions comparable to those of normal B10 cells, a regulatory B cell subset that suppresses effector T-cell function through STAT3-mediated IL-10 production. However, the mechanisms governing IL-10 production by CLL cells are not fully understood. Here, we show that the CXC chemokine ligand 12 (CXCL12)-CXCR4-STAT3 axis regulates IL-10 production by CLL cells and their ability to suppress T-cell effector function through an IL-10 mediated mechanism. Knockdown of STAT3 significantly impaired the ability of CLL cells to produce IL-10. Furthermore, experiments to assess the role of lenalidomide, an immunomodulatory agent with direct antitumor effect as well as pleiotropic activity on the immune system, showed that this agent prevents a CXCL12-induced increase in p-S727-STAT3 and the IL-10 response by CLL cells. Lenalidomide also suppressed IL-10-induced Y705-STAT3 phosphorylation in healthy T cells, thus reversing CLL-induced T-cell dysfunction. We conclude that the capacity of CLL cells to produce IL-10 is mediated by the CXCL12-CXCR4-STAT3 pathway and likely contributes to immunodeficiency in patients. Lenalidomide appears to be able to reverse CLL-induced immunosuppression through including abrogation of the CXCL12-CXCR4-S727-STAT3-mediated IL-10 response by CLL cells and prevention of IL-10-induced phosphorylation of Y705-STAT3 in T cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA