Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Pediatr Blood Cancer ; 69(9): e29753, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35561075

RESUMEN

BACKGROUND: l-Asparaginase (ASP) plays a crucial role in the treatment of childhood acute lymphoblastic leukemia (ALL). Currently, different ASP products are available in the market, including both native and pegylated drugs. Several biogeneric Escherichia coli ASP (GEN-ASP) products have been developed in response to shortages and expensiveness of the native E. coli ASP innovator compounds, but some concerns have been raised about their quality. Recently, a number of generic pegylated ASP products (GEN-PEG-ASP) have been marketed to substitute for the innovator product (PEG-ASP). METHODS: Clinical courses and serum asparaginase activity (SAA) levels were monitored in 12 children with ALL, who were treated in our institution with two doses of a GEN-PEG-ASP product, given IV at 2500 IU/m2 during the remission induction phase. Results were compared with those obtained in a reference cohort of 35 patients treated in our institution, who received the innovator PEG-ASP product at same dosage and within the same chemotherapy background. RESULTS: Compared to the reference cohort treated with PEG-ASP, SAA levels were significantly lower in the 12 patients receiving GEN-PEG-ASP (p < .0001); a higher proportion of ASP-associated hypersensitivity reactions (2/12 vs. 0/35; p = .061) and silent inactivation (3/12 vs. 0/35; p = .014) were observed in comparison with the reference cohort. CONCLUSIONS: Our results highlighted different pharmacological profiles and different rates of hypersensitivity reactions and silent inactivation in the GEN-PEG-ASP cohort compared to those treated with the innovator product. Our findings suggest that a rigorous clinical attention and a thorough pharmacological monitoring are advisable in patients treated with GEN-PEG-ASP products.


Asunto(s)
Antineoplásicos , Asparaginasa , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Asparaginasa/efectos adversos , Asparaginasa/uso terapéutico , Niño , Escherichia coli , Humanos , Polietilenglicoles/efectos adversos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Inducción de Remisión
2.
Blood ; 134(13): 1072-1083, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31331920

RESUMEN

It has been proposed that CD4 T-cell responses to Staphylococcus aureus (SA) can inadvertently enhance neoplastic progression in models of skin cancer and cutaneous T-cell lymphoma (CTCL). In this prospective study, we explored the effect of transient antibiotic treatment on tumor cells and disease activity in 8 patients with advanced-stage CTCL. All patients experienced significant decrease in clinical symptoms in response to aggressive, transient antibiotic treatment. In some patients, clinical improvements lasted for more than 8 months. In 6 of 8 patients, a malignant T-cell clone could be identified in lesional skin, and a significant decrease in the fraction of malignant T cells was observed following antibiotics but an otherwise unchanged treatment regimen. Immunohistochemistry, global messenger RNA expression, and cell-signaling pathway analysis indicated that transient aggressive antibiotic therapy was associated with decreased expression of interleukin-2 high-affinity receptors (CD25), STAT3 signaling, and cell proliferation in lesional skin. In conclusion, this study provides novel evidence suggesting that aggressive antibiotic treatment inhibits malignant T cells in lesional skin. Thus, we provide a novel rationale for treatment of SA in advanced CTCL.


Asunto(s)
Antibacterianos/uso terapéutico , Linfoma Cutáneo de Células T/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Anciano , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Linfoma Cutáneo de Células T/metabolismo , Linfoma Cutáneo de Células T/patología , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Linfocitos T/patología
3.
Dermatology ; 237(2): 277-282, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32335549

RESUMEN

BACKGROUND: Mycosis fungoides (MF), the most common form of cutaneous T-cell lymphoma (CTCL), is a lymphoproliferative disorder characterized by proliferation of malignant T cells in a chronic inflammatory environment in the skin. The nature of MF is still not fully understood, but aberrant microRNA (miR) expression and function seem to play an important role in the pathogenesis and disease progression and have been proposed as a putative disease marker. Recent studies have reported aberrant expression of miR-93 in situin MF lesions and linked dysregulated miR-93 expression to advanced stages of MF. However, the pathophysiological role of miR-93 in MF is unknown. OBJECTIVE: Here, we provide the first evidence that miR-93 targets the cell cycle regulator cyclin-dependent kinase inhibitor p21 and promotes growth of malignant T cells in MF. METHODS/RESULTS: Thus, inhibition of miR-93 in MF patient-derived malignant T-cell lines increases expression of p21 and inhibition of malignant proliferation. Notably, treatment with the histone deacetylase inhibitor Vorinostat (SAHA) reduces miR-93 expression and enhances p21 expression in the malignant T cells. Importantly, transfection with an miR-93 mimic partly blocks SAHA-induced p21 expression. CONCLUSIONS: we provide evidence that enhanced expression of the putative oncogenic miR, miR-93, represses the cell cycle inhibitor p21 and promotes proliferation of malignant T cells. Moreover, we demonstrate that SAHA triggers p21 expression - at least partly - through an inhibition of miR-93.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , MicroARNs/antagonistas & inhibidores , Micosis Fungoide/patología , Neoplasias Cutáneas/patología , Vorinostat/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Humanos , MicroARNs/biosíntesis , MicroARNs/genética , ARN Mensajero/metabolismo
4.
Dermatology ; 237(2): 283-290, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32799209

RESUMEN

BACKGROUND: The thioredoxin-interacting protein (TXNIP) is involved in cellular metabolism and cell proliferation, and recently, deficient expression of TXNIP has been associated with progression and poor outcome for cancer patients. OBJECTIVES: To assess TXNIP expression and function in malignant T cells from cutaneous T-cell lymphoma (CTCL). METHODS: CTCL-derived malignant (MyLa2059, PB2B) and non-malignant (MyLa1850) cell lines were analysed by Western blotting and qPCR for TXNIP expression. Subsequently, the malignant CTCL cell lines were treated with GSK126 - an inhibitor of enhancer of zeste homolog 2 (EZH2) methyltransferase activity or assessed by bisulphite sequencing for TXNIP promoter methylation. Methylation was also assessed with the demethylating agent 5-azacytidine (5AZA). Finally, TXNIP was overexpressed in the malignant PB2B cell line via plasmid transduction, and the effect of TXNIP was further analysed by flow cytometry. RESULTS: We report on low expression of TXNIP protein in all cell lines representing different subtypes and stages of CTCL when compared to non-malignant T cells. Epigenetic silencing and other mechanisms were involved in the repression of TXNIP whereas forced expression of TXNIP strongly inhibited proliferation of malignant T cells. CONCLUSIONS: Epigenetic silencing and other as yet unknown mechanisms repress TXNIP expression in malignant T cells. As forced expression of TXNIP inhibits malignant proliferation, we propose that TXNIP is a putative tumour suppressor in CTCL.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Linfoma Cutáneo de Células T/patología , Neoplasias Cutáneas/patología , Línea Celular Tumoral , Proliferación Celular , Metilación de ADN , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Epigénesis Genética , Silenciador del Gen , Humanos , Indoles/farmacología , Regiones Promotoras Genéticas , Piridonas/farmacología
5.
Dermatology ; 236(2): 123-132, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31536992

RESUMEN

BACKGROUND: The voltage-gated potassium channel Kv1.3 (KCNA3) is expressed by effector memory T cells (TEM) and plays an important role in their activation and proliferation. Mycosis fungoides (MF), the most common subtype of cutaneous T-cell lymphoma (CTCL), was recently proposed to be a malignancy of skin-resident TEM. However, the expression of Kv1.3 in CTCL has not been investigated. OBJECTIVES: This study aims to examine the expression of Kv1.3 in situ and in vitro in CTCL. METHODS: The expression of Kv1.3 was examined by immunohistochemistry in skin lesions from 38 patients with MF, 4 patients with Sézary syndrome (SS), and 27 patients with benign dermatosis. In 4 malignant T-cell lines of CTCL (Myla2059, PB2B, SeAx, and Mac2a) and a non-malignant T-cell line (MyLa1850), the expression of Kv1.3 was determined by flow cytometry. The proliferation of those cell lines treated with various concentrations of Kv1.3 inhibitor ShK was measured by 3H-thymdine incorporation. RESULTS: Half of the MF patients (19/38) displayed partial Kv1.3 expression including 1 patient with moderate Kv1.3 positivity, while the other half (19/38) exhibited Kv1.3 negativity. An almost identical distribution was observed in patients with benign conditions, that is, 44.4% (12/27) were partially positive for Kv1.3 including 1 patient with moderate Kv1.3 positivity, while 55.6% (15/27) were Kv1.3 negative. In contrast, 3 in 4 SS patients displayed partial Kv1.3 positivity including 2 patients with weak staining and 1 with moderate staining, while 1 in 4 SS patients was Kv1.3 negative. In addition, all malignant T-cell lines, and a non-malignant T-cell line, displayed low Kv1.3 surface expression with a similar pattern. Whereas 2 cell lines (PB2B and Mac2a) were sensitive to Kv1.3 blockade, the other 2 (Myla2059 and SeAx) were completely resistant. CONCLUSIONS: We provide the first evidence of a heterogeneous Kv1.3 expression in situ in CTCL lesions.


Asunto(s)
Dermatitis/metabolismo , Canal de Potasio Kv1.3/biosíntesis , Linfoma Cutáneo de Células T/metabolismo , Neoplasias Cutáneas/metabolismo , Piel/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biopsia , Línea Celular Tumoral , Niño , Dermatitis/patología , Femenino , Humanos , Inmunohistoquímica , Canal de Potasio Kv1.3/antagonistas & inhibidores , Linfoma Cutáneo de Células T/patología , Masculino , Persona de Mediana Edad , Piel/patología , Neoplasias Cutáneas/patología , Adulto Joven
6.
Int J Mol Sci ; 21(20)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053746

RESUMEN

DNA damage is the cause of numerous human pathologies including cancer, premature aging, and chronic inflammatory conditions. The DNA damage response (DDR), in turn, coordinates DNA damage checkpoint activation and promotes the removal of DNA lesions. In recent years, several studies have shown how the DDR and the immune system are tightly connected, revealing an important crosstalk between the two of them. This interesting interplay has opened up new perspectives in clinical studies for immunological diseases as well as for cancer treatment. In this review, we provide an overview, from cellular to molecular pathways, on how DDR and the immune system communicate and share the crucial commitment of maintaining the genomic fitness.


Asunto(s)
Daño del ADN , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad , Animales , Biomarcadores , Susceptibilidad a Enfermedades , Humanos , Inmunidad Innata , Inflamación/etiología , Inflamación/metabolismo , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/etiología , Neoplasias/radioterapia , Estrés Oxidativo , Transducción de Señal
7.
PLoS Pathog ; 12(4): e1005528, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27055274

RESUMEN

Bacterial genotoxins, produced by several Gram-negative bacteria, induce DNA damage in the target cells. While the responses induced in the host cells have been extensively studied in vitro, the role of these effectors during the course of infection remains poorly characterized. To address this issue, we assessed the effects of the Salmonella enterica genotoxin, known as typhoid toxin, in in vivo models of murine infection. Immunocompetent mice were infected with isogenic S. enterica, serovar Typhimurium (S. Typhimurium) strains, encoding either a functional or an inactive typhoid toxin. The presence of the genotoxic subunit was detected 10 days post-infection in the liver of infected mice. Unexpectedly, its expression promoted the survival of the host, and was associated with a significant reduction of severe enteritis in the early phases of infection. Immunohistochemical and transcriptomic analysis confirmed the toxin-mediated suppression of the intestinal inflammatory response. The presence of a functional typhoid toxin further induced an increased frequency of asymptomatic carriers. Our data indicate that the typhoid toxin DNA damaging activity increases host survival and favours long-term colonization, highlighting a complex cross-talk between infection, DNA damage response and host immune response. These findings may contribute to understand why such effectors have been evolutionary conserved and horizontally transferred among Gram-negative bacteria.


Asunto(s)
Infecciones Asintomáticas , Enfermedades Transmisibles/microbiología , Mutágenos/toxicidad , Salmonella typhimurium/patogenicidad , Fiebre Tifoidea/microbiología , Animales , Intestinos/microbiología , Macrófagos/microbiología , Ratones , Virulencia
8.
Blood ; 127(10): 1287-96, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26738536

RESUMEN

Cutaneous T-cell lymphoma (CTCL) is characterized by proliferation of malignant T cells in a chronic inflammatory environment. With disease progression, bacteria colonize the compromised skin barrier and half of CTCL patients die of infection rather than from direct organ involvement by the malignancy. Clinical data indicate that bacteria play a direct role in disease progression, but little is known about the mechanisms involved. Here, we demonstrate that bacterial isolates containing staphylococcal enterotoxin A (SEA) from the affected skin of CTCL patients, as well as recombinant SEA, stimulate activation of signal transducer and activator of transcription 3 (STAT3) and upregulation of interleukin (IL)-17 in immortalized and primary patient-derived malignant and nonmalignant T cells. Importantly, SEA induces STAT3 activation and IL-17 expression in malignant T cells when cocultured with nonmalignant T cells, indicating an indirect mode of action. In accordance, malignant T cells expressing an SEA-nonresponsive T-cell receptor variable region ß chain are nonresponsive to SEA in monoculture but display strong STAT3 activation and IL-17 expression in cocultures with SEA-responsive nonmalignant T cells. The response is induced via IL-2 receptor common γ chain cytokines and a Janus kinase 3 (JAK3)-dependent pathway in malignant T cells, and blocked by tofacitinib, a clinical-grade JAK3 inhibitor. In conclusion, we demonstrate that SEA induces cell cross talk-dependent activation of STAT3 and expression of IL-17 in malignant T cells, suggesting a mechanism whereby SEA-producing bacteria promote activation of an established oncogenic pathway previously implicated in carcinogenesis.


Asunto(s)
Enterotoxinas/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Interleucina-17/biosíntesis , Proteínas de Neoplasias/metabolismo , Factor de Transcripción STAT3/metabolismo , Síndrome de Sézary/metabolismo , Linfocitos T/metabolismo , Línea Celular Tumoral , Técnicas de Cocultivo , Femenino , Humanos , Subunidad gamma Común de Receptores de Interleucina/metabolismo , Activación de Linfocitos/efectos de los fármacos , Masculino , Piperidinas/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Síndrome de Sézary/patología , Linfocitos T/patología
9.
Front Immunol ; 14: 1210836, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520551

RESUMEN

Differentiation of naive CD4+ T cells into effector T cells is a dynamic process in which the cells are polarized into T helper (Th) subsets. The subsets largely consist of four fundamental categories: Th1, Th2, Th17, and regulatory T cells. We show that human memory CD4+ T cells can produce hepatocyte growth factor (HGF), a pleiotropic cytokine which can affect several tissue types through signaling by its receptor, c-Met. In vitro differentiation of T cells into Th-like subsets revealed that HGF producing T cells increase under Th1 conditions. Enrichment of HGF producing cells was possible by targeting cells with surface CD30 expression, a marker discovered through single-cell RNA-sequencing. Furthermore, pharmacological inhibition of PI3K or mTOR was found to inhibit HGF mRNA and protein, while an Akt inhibitor was found to increase these levels. The findings suggest that HGF producing T cells could play a role in disease where Th1 are present.

10.
Oncoimmunology ; 12(1): 2239035, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37538353

RESUMEN

Chemotherapy is the standard of care for most malignancies. Its tumor debulking effect in adjuvant or neoadjuvant settings is unquestionable, although secondary effects have been reported that paradoxically promote metastasis. Chemotherapy affects the hematopoietic precursors leading to myelosuppression, with neutropenia being the main hematological toxicity induced by cytotoxic therapy. We used renal and lung murine tumor models metastatic to the lung to study chemotherapy-induced neutropenia (CIN) in the metastatic process. Cyclophosphamide and doxorubicin, two myelosuppressive drugs, but not cisplatin, increased the burden of artificial metastases to the lung, by reducing neutrophils. This effect was recapitulated by treatment with anti-Ly6G, the selective antibody-mediated neutrophil depletion that unleashed the formation of lung metastases in both artificial and spontaneous metastasis settings. The increased cancer dissemination was reversed by granulocyte-colony stimulating factor-mediated boosting of neutrophils in combination with chemotherapy. CIN affected the early metastatic colonization of the lung, quite likely promoting the proliferation of tumor cells extravasated into the lung at 24-72 hours. CIN did not affect the late events of the metastatic process, with established metastasis to the lung, nor was there any effect on the release of cancer cells from the primary, whose growth was, in fact, somewhat inhibited. This work suggests a role of neutrophils associated to a common cancer treatment side effect and claims a deep dive into the relationship between chemotherapy-induced neutropenia and metastasis.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Neutropenia , Ratones , Animales , Neutropenia/inducido químicamente , Neutropenia/tratamiento farmacológico , Factor Estimulante de Colonias de Granulocitos/farmacología , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Antineoplásicos/efectos adversos , Proliferación Celular
11.
J Exp Clin Cancer Res ; 42(1): 298, 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951921

RESUMEN

BACKGROUND: Gastric-cancer is a heterogeneous type of neoplastic disease and it lacks appropriate therapeutic options. There is an urgent need for the development of innovative pharmacological strategies, particularly in consideration of the potential stratified/personalized treatment of this tumor. All-Trans Retinoic-acid (ATRA) is one of the active metabolites of vitamin-A. This natural compound is the first example of clinically approved cyto-differentiating agent, being used in the treatment of acute promyelocytic leukemia. ATRA may have significant therapeutic potential also in the context of solid tumors, including gastric-cancer. The present study provides pre-clinical evidence supporting the use of ATRA in the treatment of gastric-cancer using high-throughput approaches. METHODS: We evaluated the anti-proliferative action of ATRA in 27 gastric-cancer cell-lines and tissue-slice cultures from 13 gastric-cancer patients. We performed RNA-sequencing studies in 13 cell-lines exposed to ATRA. We used these and the gastric-cancer RNA-sequencing data of the TCGA/CCLE datasets to conduct multiple computational analyses. RESULTS: Profiling of our large panel of gastric-cancer cell-lines for their quantitative response to the anti-proliferative effects of ATRA indicate that approximately half of the cell-lines are characterized by sensitivity to the retinoid. The constitutive transcriptomic profiles of these cell-lines permitted the construction of a model consisting of 42 genes, whose expression correlates with ATRA-sensitivity.  The model predicts that 45% of the TCGA gastric-cancers are sensitive to ATRA. RNA-sequencing studies performed in retinoid-treated gastric-cancer cell-lines provide insights into the gene-networks underlying ATRA anti-tumor activity. In addition, our data demonstrate that ATRA exerts significant immune-modulatory effects, which seem to be largely controlled by IRF1 up-regulation. Finally, we provide evidence of a feed-back loop between IRF1 and DHRS3, another gene which is up-regulated by ATRA. CONCLUSIONS: ATRA is endowed with significant therapeutic potential in the stratified/personalized treatment gastric-cancer. Our data represent the fundaments for the design of clinical trials focusing on the use of ATRA in the personalized treatment of this heterogeneous tumor. Our gene-expression model will permit the development of a predictive tool for the selection of ATRA-sensitive gastric-cancer patients. The immune-regulatory responses activated by ATRA suggest that the retinoid and immune-checkpoint inhibitors constitute rational combinations for the management of gastric-cancer.


Asunto(s)
Antineoplásicos , Neoplasias Gástricas , Humanos , Tretinoina/farmacología , Tretinoina/uso terapéutico , Retinoides , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Transcriptoma , ARN , Antineoplásicos/farmacología
12.
Front Oncol ; 12: 871513, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664746

RESUMEN

The importance of the tumor microenvironment (TME) in dynamically regulating cancer progression and influencing the therapeutic outcome is widely accepted and appreciated. Several therapeutic strategies to modify or modulate the TME, like angiogenesis or immune checkpoint inhibitors, showed clinical efficacy and received approval from regulatory authorities. Within recent decades, new promising strategies targeting myeloid cells have been implemented in preclinical cancer models. The predominance of specific cell phenotypes in the TME has been attributed to pro- or anti-tumoral. Hence, their modulation can, in turn, alter the responses to standard-of-care treatments, making them more or less effective. Here, we summarize and discuss the current knowledge and the correlated challenges about the tumor-associated macrophages and neutrophils targeting strategies, current treatments, and future developments.

13.
Front Immunol ; 13: 884024, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35603212

RESUMEN

The bone marrow (BM) niche is the spatial structure within the intra-trabecular spaces of spongious bones and of the cavity of long bones where adult haematopoietic stem cells (HSCs) maintain their undifferentiated and cellular self-renewal state through the intervention of vascular and nervous networks, metabolic pathways, transcriptional and epigenetic regulators, and humoral signals. Within the niche, HSCs interact with various cell types such as osteoblasts, endothelial cells, macrophages, and mesenchymal stromal cells (MSCs), which maintain HSCs in a quiescent state or sustain their proliferation, differentiation, and trafficking, depending on body needs. In physiological conditions, the BM niche permits the daily production of all the blood and immune cells and their admittance/ingress/progression into the bloodstream. However, disruption of this delicate microenvironment promotes the initiation and progression of malignancies such as those included in the spectrum of myeloid neoplasms, also favouring resistance to pharmacological therapies. Alterations in the MSC population and in the crosstalk with HSCs owing to tumour-derived factors contribute to the formation of a malignant niche. On the other hand, cells of the BM microenvironment cooperate in creating a unique milieu favouring metastasization of distant tumours into the bone. In this framework, the pro-tumorigenic role of MSCs is well-documented, and few evidence suggest also an anti-tumorigenic effect. Here we will review recent advances regarding the BM niche composition and functionality in normal and in malignant conditions, as well as the therapeutic implications of the interplay between its diverse cellular components and malignant cells.


Asunto(s)
Médula Ósea , Células Madre Mesenquimatosas , Médula Ósea/metabolismo , Células Endoteliales , Células Madre Hematopoyéticas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Nicho de Células Madre
14.
Pathogens ; 11(3)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35335685

RESUMEN

The interaction of humans with microorganisms represents a subtle balance between harm and good [...].

15.
Pathogens ; 10(10)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34684182

RESUMEN

In order to prevent new pathogen outbreaks and avoid possible new global health threats, it is important to study the mechanisms of microbial pathogenesis, screen new antiviral agents and test new vaccines using the best methods. In the last decade, organoids have provided a groundbreaking opportunity for modeling pathogen infections in human brains, including Zika virus (ZIKV) infection. ZIKV is a member of the Flavivirus genus, and it is recognized as an emerging infectious agent and a serious threat to global health. Organoids are 3D complex cellular models that offer an in-scale organ that is physiologically alike to the original one, useful for exploring the mechanisms behind pathogens infection; additionally, organoids integrate data generated in vitro with traditional tools and often support those obtained in vivo with animal model. In this mini-review the value of organoids for ZIKV research is examined and sustained by the most recent literature. Within a 3D viewpoint, tissue engineered models are proposed as future biological systems to help in deciphering pathogenic processes and evaluate preventive and therapeutic strategies against ZIKV. The next steps in this field constitute a challenge that may protect people and future generations from severe brain defects.

16.
Sci Rep ; 11(1): 1458, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446766

RESUMEN

T cell activation is intimately linked to metabolism, as distinct metabolic requirements support the functional and phenotypical differences between quiescent and activated T cells. Metabolic transition from mitochondrial oxidative phosphorylation to aerobic glycolysis is crucial for a proper T cell activation. However, the role of tricarboxylic acid cycle (TCA), and in particular succinate dehydrogenase (SDH) in activated T cells needs further elucidation. Here we show that inhibition of SDH during activation of T cells results in strong impairment of proliferation, expression of activation markers, and production of key inflammatory cytokines, despite a concomitant increase in glycolytic metabolic activity. Similar effect of SDH inhibition were demonstrated in pre-activated T cell. Interestingly, itaconic acid, an endogenous SDH inhibitor released from activated macrophages and dendritic cells, had no immunomodulator effect. Taken together, our findings demonstrate that SDH enzyme fitness is critical for mounting and maintaining appropriate activation and function of human T cells.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacos , Succinato Deshidrogenasa/antagonistas & inhibidores , Linfocitos T/inmunología , Citocinas/biosíntesis , Citocinas/inmunología , Activación Enzimática/efectos de los fármacos , Activación Enzimática/inmunología , Regulación de la Expresión Génica/inmunología , Humanos , Succinato Deshidrogenasa/inmunología
17.
Oncoimmunology ; 9(1): 1751561, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32363124

RESUMEN

Staphylococcus aureus and its toxins have been linked to disease progression and mortality in advanced stages of cutaneous T-cell lymphoma (CTCL). CD8+ T cells play a crucial role in anti-cancer responses and high CD8+ T cell numbers in tumor lesions are associated with a favorable prognosis in CTCL. Here, we show that CD8+ T cells from both healthy donors and Sézary syndrome patients are highly susceptible to cell death induced by Staphylococcal alpha-toxin, whereas malignant T cells are not. Importantly, alpha-toxin almost completely blocks cytotoxic killing of CTCL tumor cells by peptide-specific CD8+ T cells, leading to their escape from induced cell death and continued proliferation. These findings suggest that alpha-toxin may favor the persistence of malignant CTCL cells in vivo by inhibiting CD8+ T cell cytotoxicity. Thus, we propose a novel mechanism by which colonization with Staphylococcus aureus may contribute to cancer immune evasion and disease progression in CTCL.


Asunto(s)
Toxinas Bacterianas , Linfocitos T CD8-positivos , Proteínas Hemolisinas , Linfoma Cutáneo de Células T , Neoplasias Cutáneas , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Humanos , Leucocitos Mononucleares , Linfoma Cutáneo de Células T/inmunología , Neoplasias Cutáneas/inmunología , Staphylococcus aureus
18.
Blood Cancer J ; 10(5): 57, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32409671

RESUMEN

Sézary syndrome (SS) is a heterogeneous leukemic subtype of cutaneous T-cell lymphoma (CTCL) with generalized erythroderma, lymphadenopathy, and a poor prognosis. Advanced disease is invariably associated with severe immune dysregulation and the majority of patients die from infectious complications caused by microorganisms such as, Staphylococcus aureus, rather than from the lymphoma per se. Here, we examined if staphylococcal enterotoxins (SE) may shape the phenotype of malignant SS cells, including expression of the regulatory T-cell-associated marker FOXP3. Our studies with primary and cultured malignant cells show that SE induce expression of FOXP3 in malignant cells when exposed to nonmalignant cells. Mutations in the MHC class II binding domain of SE-A (SEA) largely block the effect indicating that the response relies at least in part on the MHC class II-mediated antigen presentation. Transwell experiments show that the effect is induced by soluble factors, partly blocked by anti-IL-2 antibody, and depends on STAT5 activation in malignant cells. Collectively, these findings show that SE stimulate nonmalignant cells to induce FOXP3 expression in malignant cells. Thus, differences in exposure to environmental factors, such as bacterial toxins may explain the heterogeneous FOXP3 expression in malignant cells in SS.


Asunto(s)
Enterotoxinas/inmunología , Factores de Transcripción Forkhead/genética , Síndrome de Sézary/inmunología , Neoplasias Cutáneas/inmunología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Línea Celular Tumoral , Factores de Transcripción Forkhead/inmunología , Humanos , Síndrome de Sézary/complicaciones , Síndrome de Sézary/genética , Neoplasias Cutáneas/complicaciones , Neoplasias Cutáneas/genética , Infecciones Estafilocócicas/complicaciones , Infecciones Estafilocócicas/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Células Tumorales Cultivadas , Regulación hacia Arriba
19.
Oncotarget ; 10(47): 4894-4906, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31448055

RESUMEN

The voltage-gated potassium channel Kv1.3 (KCNA3) is expressed by a subset of chronically activated memory T cells and plays an important role in their activation and proliferation. Here, we show that primary malignant T cells isolated from patients with Sézary syndrome (SS) express Kv1.3 and are sensitive to potent Kv1.3 inhibitors ShK and Vm24, but not sensitive to a less potent inhibitor [N17A/F32T]-AnTx. Kv1.3 blockade inhibits CD3/CD28-induced proliferation and IL-9 expression by SS cells in a concentration-dependent manner. In parallel, CD3/CD28-mediated CD25 induction is inhibited, whereas Kv1.3 blockade has no effect on apoptosis or cell death as judged by Annexin V and PI staining. In conclusion, we provide the first evidence that malignant T cells in SS express functional Kv1.3 channels and that Kv1.3 blockade inhibits activation-induced proliferation as well as cytokine and cytokine receptor expression in malignant T cells, suggesting that Kv1.3 is a potential target for therapy in SS.

20.
Oncoimmunology ; 8(11): e1641387, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31646088

RESUMEN

Staphylococcus aureus is implicated in disease progression in cutaneous T-cell lymphoma (CTCL). Here, we demonstrate that malignant T cell lines derived from CTCL patients as well as primary malignant CD4+ T cells from Sézary syndrome patients are considerably more resistant to alpha-toxin-induced cell death than their non-malignant counterparts. Thus, in a subset of Sézary syndrome patients the ratio between malignant and non-malignant CD4+ T cells increases significantly following exposure to alpha-toxin. Whereas toxin-induced cell death is ADAM10 dependent in healthy CD4+ T cells, resistance to alpha-toxin in malignant T cells involves both downregulation of ADAM10 as well as other resistance mechanisms. In conclusion, we provide first evidence that Staphylococcus aureus derived alpha-toxin can tilt the balance between malignant and non-malignant CD4+ T cells in CTCL patients. Consequently, alpha-toxin may promote disease progression through positive selection of malignant CD4+ T cells, identifying alpha-toxin as a putative drug target in CTCL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA