Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(D1): D418-D427, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36350672

RESUMEN

The InterPro database (https://www.ebi.ac.uk/interpro/) provides an integrative classification of protein sequences into families, and identifies functionally important domains and conserved sites. Here, we report recent developments with InterPro (version 90.0) and its associated software, including updates to data content and to the website. These developments extend and enrich the information provided by InterPro, and provide a more user friendly access to the data. Additionally, we have worked on adding Pfam website features to the InterPro website, as the Pfam website will be retired in late 2022. We also show that InterPro's sequence coverage has kept pace with the growth of UniProtKB. Moreover, we report the development of a card game as a method of engaging the non-scientific community. Finally, we discuss the benefits and challenges brought by the use of artificial intelligence for protein structure prediction.


Asunto(s)
Bases de Datos de Proteínas , Humanos , Secuencia de Aminoácidos , Inteligencia Artificial , Internet , Proteínas/química , Programas Informáticos
2.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34015823

RESUMEN

In response to the COVID-19 outbreak, scientists and medical researchers are capturing a wide range of host responses, symptoms and lingering postrecovery problems within the human population. These variable clinical manifestations suggest differences in influential factors, such as innate and adaptive host immunity, existing or underlying health conditions, comorbidities, genetics and other factors-compounding the complexity of COVID-19 pathobiology and potential biomarkers associated with the disease, as they become available. The heterogeneous data pose challenges for efficient extrapolation of information into clinical applications. We have curated 145 COVID-19 biomarkers by developing a novel cross-cutting disease biomarker data model that allows integration and evaluation of biomarkers in patients with comorbidities. Most biomarkers are related to the immune (SAA, TNF-∝ and IP-10) or coagulation (D-dimer, antithrombin and VWF) cascades, suggesting complex vascular pathobiology of the disease. Furthermore, we observe commonality with established cancer biomarkers (ACE2, IL-6, IL-4 and IL-2) as well as biomarkers for metabolic syndrome and diabetes (CRP, NLR and LDL). We explore these trends as we put forth a COVID-19 biomarker resource (https://data.oncomx.org/covid19) that will help researchers and diagnosticians alike.

3.
Nucleic Acids Res ; 49(D1): D344-D354, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33156333

RESUMEN

The InterPro database (https://www.ebi.ac.uk/interpro/) provides an integrative classification of protein sequences into families, and identifies functionally important domains and conserved sites. InterProScan is the underlying software that allows protein and nucleic acid sequences to be searched against InterPro's signatures. Signatures are predictive models which describe protein families, domains or sites, and are provided by multiple databases. InterPro combines signatures representing equivalent families, domains or sites, and provides additional information such as descriptions, literature references and Gene Ontology (GO) terms, to produce a comprehensive resource for protein classification. Founded in 1999, InterPro has become one of the most widely used resources for protein family annotation. Here, we report the status of InterPro (version 81.0) in its 20th year of operation, and its associated software, including updates to database content, the release of a new website and REST API, and performance improvements in InterProScan.


Asunto(s)
Bases de Datos de Proteínas , Proteínas/química , Secuencia de Aminoácidos , COVID-19/metabolismo , Internet , Anotación de Secuencia Molecular , Dominios Proteicos , Mapas de Interacción de Proteínas , SARS-CoV-2/metabolismo , Alineación de Secuencia
4.
Bioinformatics ; 36(12): 3941-3943, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32324859

RESUMEN

SUMMARY: Glycoinformatics plays a major role in glycobiology research, and the development of a comprehensive glycoinformatics knowledgebase is critical. This application note describes the GlyGen data model, processing workflow and the data access interfaces featuring programmatic use case example queries based on specific biological questions. The GlyGen project is a data integration, harmonization and dissemination project for carbohydrate and glycoconjugate-related data retrieved from multiple international data sources including UniProtKB, GlyTouCan, UniCarbKB and other key resources. AVAILABILITY AND IMPLEMENTATION: GlyGen web portal is freely available to access at https://glygen.org. The data portal, web services, SPARQL endpoint and GitHub repository are also freely available at https://data.glygen.org, https://api.glygen.org, https://sparql.glygen.org and https://github.com/glygener, respectively. All code is released under license GNU General Public License version 3 (GNU GPLv3) and is available on GitHub https://github.com/glygener. The datasets are made available under Creative Commons Attribution 4.0 International (CC BY 4.0) license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Bases del Conocimiento , Programas Informáticos , Glicómica , Almacenamiento y Recuperación de la Información , Flujo de Trabajo
5.
Bioinformatics ; 36(17): 4643-4648, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32399560

RESUMEN

MOTIVATION: The number of protein records in the UniProt Knowledgebase (UniProtKB: https://www.uniprot.org) continues to grow rapidly as a result of genome sequencing and the prediction of protein-coding genes. Providing functional annotation for these proteins presents a significant and continuing challenge. RESULTS: In response to this challenge, UniProt has developed a method of annotation, known as UniRule, based on expertly curated rules, which integrates related systems (RuleBase, HAMAP, PIRSR, PIRNR) developed by the members of the UniProt consortium. UniRule uses protein family signatures from InterPro, combined with taxonomic and other constraints, to select sets of reviewed proteins which have common functional properties supported by experimental evidence. This annotation is propagated to unreviewed records in UniProtKB that meet the same selection criteria, most of which do not have (and are never likely to have) experimentally verified functional annotation. Release 2020_01 of UniProtKB contains 6496 UniRule rules which provide annotation for 53 million proteins, accounting for 30% of the 178 million records in UniProtKB. UniRule provides scalable enrichment of annotation in UniProtKB. AVAILABILITY AND IMPLEMENTATION: UniRule rules are integrated into UniProtKB and can be viewed at https://www.uniprot.org/unirule/. UniRule rules and the code required to run the rules, are publicly available for researchers who wish to annotate their own sequences. The implementation used to run the rules is known as UniFIRE and is available at https://gitlab.ebi.ac.uk/uniprot-public/unifire.


Asunto(s)
Bases del Conocimiento , Proteínas , Mapeo Cromosómico , Bases de Datos de Proteínas , Anotación de Secuencia Molecular , Proteínas/genética
6.
Nucleic Acids Res ; 47(D1): D351-D360, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30398656

RESUMEN

The InterPro database (http://www.ebi.ac.uk/interpro/) classifies protein sequences into families and predicts the presence of functionally important domains and sites. Here, we report recent developments with InterPro (version 70.0) and its associated software, including an 18% growth in the size of the database in terms on new InterPro entries, updates to content, the inclusion of an additional entry type, refined modelling of discontinuous domains, and the development of a new programmatic interface and website. These developments extend and enrich the information provided by InterPro, and provide greater flexibility in terms of data access. We also show that InterPro's sequence coverage has kept pace with the growth of UniProtKB, and discuss how our evaluation of residue coverage may help guide future curation activities.


Asunto(s)
Bases de Datos de Proteínas , Anotación de Secuencia Molecular , Animales , Bases de Datos Genéticas , Ontología de Genes , Humanos , Internet , Familia de Multigenes , Dominios Proteicos/genética , Homología de Secuencia de Aminoácido , Programas Informáticos , Interfaz Usuario-Computador
7.
Nucleic Acids Res ; 45(D1): D339-D346, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27899649

RESUMEN

The Protein Ontology (PRO; http://purl.obolibrary.org/obo/pr) formally defines and describes taxon-specific and taxon-neutral protein-related entities in three major areas: proteins related by evolution; proteins produced from a given gene; and protein-containing complexes. PRO thus serves as a tool for referencing protein entities at any level of specificity. To enhance this ability, and to facilitate the comparison of such entities described in different resources, we developed a standardized representation of proteoforms using UniProtKB as a sequence reference and PSI-MOD as a post-translational modification reference. We illustrate its use in facilitating an alignment between PRO and Reactome protein entities. We also address issues of scalability, describing our first steps into the use of text mining to identify protein-related entities, the large-scale import of proteoform information from expert curated resources, and our ability to dynamically generate PRO terms. Web views for individual terms are now more informative about closely-related terms, including for example an interactive multiple sequence alignment. Finally, we describe recent improvement in semantic utility, with PRO now represented in OWL and as a SPARQL endpoint. These developments will further support the anticipated growth of PRO and facilitate discoverability of and allow aggregation of data relating to protein entities.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Proteínas , Animales , Humanos , Proteínas/química , Proteínas/genética , Navegador Web
8.
Nucleic Acids Res ; 45(D1): D190-D199, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27899635

RESUMEN

InterPro (http://www.ebi.ac.uk/interpro/) is a freely available database used to classify protein sequences into families and to predict the presence of important domains and sites. InterProScan is the underlying software that allows both protein and nucleic acid sequences to be searched against InterPro's predictive models, which are provided by its member databases. Here, we report recent developments with InterPro and its associated software, including the addition of two new databases (SFLD and CDD), and the functionality to include residue-level annotation and prediction of intrinsic disorder. These developments enrich the annotations provided by InterPro, increase the overall number of residues annotated and allow more specific functional inferences.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Proteínas , Dominios y Motivos de Interacción de Proteínas , Programas Informáticos , Humanos , Anotación de Secuencia Molecular , Filogenia
9.
Bioinformatics ; 32(13): 2041-3, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27153712

RESUMEN

MOTIVATION: The enormous number of redundant sequenced genomes has hindered efforts to analyze and functionally annotate proteins. As the taxonomy of viruses is not uniformly defined, viral proteomes pose special challenges in this regard. Grouping viruses based on the similarity of their proteins at proteome scale can normalize against potential taxonomic nomenclature anomalies. RESULTS: We present Viral Reference Proteomes (Viral RPs), which are computed from complete virus proteomes within UniProtKB. Viral RPs based on 95, 75, 55, 35 and 15% co-membership in proteome similarity based clusters are provided. Comparison of our computational Viral RPs with UniProt's curator-selected Reference Proteomes indicates that the two sets are consistent and complementary. Furthermore, each Viral RP represents a cluster of virus proteomes that was consistent with virus or host taxonomy. We provide BLASTP search and FTP download of Viral RP protein sequences, and a browser to facilitate the visualization of Viral RPs. AVAILABILITY AND IMPLEMENTATION: http://proteininformationresource.org/rps/viruses/ CONTACT: chenc@udel.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Bases de Datos de Proteínas , Proteoma/análisis , Proteínas Virales/análisis , Secuencia de Aminoácidos , Análisis por Conglomerados , Biología Computacional , Bases del Conocimiento
11.
Nucleic Acids Res ; 43(Database issue): D213-21, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25428371

RESUMEN

The InterPro database (http://www.ebi.ac.uk/interpro/) is a freely available resource that can be used to classify sequences into protein families and to predict the presence of important domains and sites. Central to the InterPro database are predictive models, known as signatures, from a range of different protein family databases that have different biological focuses and use different methodological approaches to classify protein families and domains. InterPro integrates these signatures, capitalizing on the respective strengths of the individual databases, to produce a powerful protein classification resource. Here, we report on the status of InterPro as it enters its 15th year of operation, and give an overview of new developments with the database and its associated Web interfaces and software. In particular, the new domain architecture search tool is described and the process of mapping of Gene Ontology terms to InterPro is outlined. We also discuss the challenges faced by the resource given the explosive growth in sequence data in recent years. InterPro (version 48.0) contains 36,766 member database signatures integrated into 26,238 InterPro entries, an increase of over 3993 entries (5081 signatures), since 2012.


Asunto(s)
Bases de Datos de Proteínas , Proteínas/clasificación , Bacterias/metabolismo , Ontología de Genes , Estructura Terciaria de Proteína , Proteínas/genética , Análisis de Secuencia de Proteína , Programas Informáticos
12.
Nucleic Acids Res ; 42(Database issue): D415-21, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24270789

RESUMEN

The Protein Ontology (PRO; http://proconsortium.org) formally defines protein entities and explicitly represents their major forms and interrelations. Protein entities represented in PRO corresponding to single amino acid chains are categorized by level of specificity into family, gene, sequence and modification metaclasses, and there is a separate metaclass for protein complexes. All metaclasses also have organism-specific derivatives. PRO complements established sequence databases such as UniProtKB, and interoperates with other biomedical and biological ontologies such as the Gene Ontology (GO). PRO relates to UniProtKB in that PRO's organism-specific classes of proteins encoded by a specific gene correspond to entities documented in UniProtKB entries. PRO relates to the GO in that PRO's representations of organism-specific protein complexes are subclasses of the organism-agnostic protein complex terms in the GO Cellular Component Ontology. The past few years have seen growth and changes to the PRO, as well as new points of access to the data and new applications of PRO in immunology and proteomics. Here we describe some of these developments.


Asunto(s)
Ontologías Biológicas , Bases de Datos de Proteínas , Proteínas/clasificación , Animales , Humanos , Internet , Ratones , Proteínas/química
14.
Nucleic Acids Res ; 40(Database issue): D306-12, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22096229

RESUMEN

InterPro (http://www.ebi.ac.uk/interpro/) is a database that integrates diverse information about protein families, domains and functional sites, and makes it freely available to the public via Web-based interfaces and services. Central to the database are diagnostic models, known as signatures, against which protein sequences can be searched to determine their potential function. InterPro has utility in the large-scale analysis of whole genomes and meta-genomes, as well as in characterizing individual protein sequences. Herein we give an overview of new developments in the database and its associated software since 2009, including updates to database content, curation processes and Web and programmatic interfaces.


Asunto(s)
Bases de Datos de Proteínas , Estructura Terciaria de Proteína , Proteínas/clasificación , Proteínas/fisiología , Análisis de Secuencia de Proteína , Programas Informáticos , Terminología como Asunto , Interfaz Usuario-Computador
15.
Bioinform Adv ; 4(1): vbae057, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721398

RESUMEN

Motivation: Data reuse is a common and vital practice in molecular biology and enables the knowledge gathered over recent decades to drive discovery and innovation in the life sciences. Much of this knowledge has been collated into molecular biology databases, such as UniProtKB, and these resources derive enormous value from sharing data among themselves. However, quantifying and documenting this kind of data reuse remains a challenge. Results: The article reports on a one-day virtual workshop hosted by the UniProt Consortium in March 2023, attended by representatives from biodata resources, experts in data management, and NIH program managers. Workshop discussions focused on strategies for tracking data reuse, best practices for reusing data, and the challenges associated with data reuse and tracking. Surveys and discussions showed that data reuse is widespread, but critical information for reproducibility is sometimes lacking. Challenges include costs of tracking data reuse, tensions between tracking data and open sharing, restrictive licenses, and difficulties in tracking commercial data use. Recommendations that emerged from the discussion include: development of standardized formats for documenting data reuse, education about the obstacles posed by restrictive licenses, and continued recognition by funding agencies that data management is a critical activity that requires dedicated resources. Availability and implementation: Summaries of survey results are available at: https://docs.google.com/forms/d/1j-VU2ifEKb9C-sW6l3ATB79dgHdRk5v_lESv2hawnso/viewanalytics (survey of data providers) and https://docs.google.com/forms/d/18WbJFutUd7qiZoEzbOytFYXSfWFT61hVce0vjvIwIjk/viewanalytics (survey of users).

16.
Nucleic Acids Res ; 39(Database issue): D539-45, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20935045

RESUMEN

The Protein Ontology (PRO) provides a formal, logically-based classification of specific protein classes including structured representations of protein isoforms, variants and modified forms. Initially focused on proteins found in human, mouse and Escherichia coli, PRO now includes representations of protein complexes. The PRO Consortium works in concert with the developers of other biomedical ontologies and protein knowledge bases to provide the ability to formally organize and integrate representations of precise protein forms so as to enhance accessibility to results of protein research. PRO (http://pir.georgetown.edu/pro) is part of the Open Biomedical Ontology Foundry.


Asunto(s)
Bases de Datos de Proteínas , Proteínas/clasificación , Animales , Proteínas de Escherichia coli/química , Humanos , Ratones , Complejos Multiproteicos/química , Complejos Multiproteicos/clasificación , Isoformas de Proteínas/química , Isoformas de Proteínas/clasificación , Proteínas/química , Proteínas/genética , Interfaz Usuario-Computador , Vocabulario Controlado
17.
Hum Mol Genet ; 19(4): 707-19, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19933168

RESUMEN

We describe a novel approach to genetic association analyses with proteins sub-divided into biologically relevant smaller sequence features (SFs), and their variant types (VTs). SFVT analyses are particularly informative for study of highly polymorphic proteins such as the human leukocyte antigen (HLA), given the nature of its genetic variation: the high level of polymorphism, the pattern of amino acid variability, and that most HLA variation occurs at functionally important sites, as well as its known role in organ transplant rejection, autoimmune disease development and response to infection. Further, combinations of variable amino acid sites shared by several HLA alleles (shared epitopes) are most likely better descriptors of the actual causative genetic variants. In a cohort of systemic sclerosis patients/controls, SFVT analysis shows that a combination of SFs implicating specific amino acid residues in peptide binding pockets 4 and 7 of HLA-DRB1 explains much of the molecular determinant of risk.


Asunto(s)
Variación Genética , Antígenos HLA/genética , Esclerodermia Sistémica/genética , Antígenos HLA/química , Antígenos HLA-DR/química , Antígenos HLA-DR/genética , Cadenas HLA-DRB1 , Humanos , Conformación Molecular
18.
J Biomed Semantics ; 13(1): 25, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271389

RESUMEN

BACKGROUND: The current COVID-19 pandemic and the previous SARS/MERS outbreaks of 2003 and 2012 have resulted in a series of major global public health crises. We argue that in the interest of developing effective and safe vaccines and drugs and to better understand coronaviruses and associated disease mechenisms it is necessary to integrate the large and exponentially growing body of heterogeneous coronavirus data. Ontologies play an important role in standard-based knowledge and data representation, integration, sharing, and analysis. Accordingly, we initiated the development of the community-based Coronavirus Infectious Disease Ontology (CIDO) in early 2020. RESULTS: As an Open Biomedical Ontology (OBO) library ontology, CIDO is open source and interoperable with other existing OBO ontologies. CIDO is aligned with the Basic Formal Ontology and Viral Infectious Disease Ontology. CIDO has imported terms from over 30 OBO ontologies. For example, CIDO imports all SARS-CoV-2 protein terms from the Protein Ontology, COVID-19-related phenotype terms from the Human Phenotype Ontology, and over 100 COVID-19 terms for vaccines (both authorized and in clinical trial) from the Vaccine Ontology. CIDO systematically represents variants of SARS-CoV-2 viruses and over 300 amino acid substitutions therein, along with over 300 diagnostic kits and methods. CIDO also describes hundreds of host-coronavirus protein-protein interactions (PPIs) and the drugs that target proteins in these PPIs. CIDO has been used to model COVID-19 related phenomena in areas such as epidemiology. The scope of CIDO was evaluated by visual analysis supported by a summarization network method. CIDO has been used in various applications such as term standardization, inference, natural language processing (NLP) and clinical data integration. We have applied the amino acid variant knowledge present in CIDO to analyze differences between SARS-CoV-2 Delta and Omicron variants. CIDO's integrative host-coronavirus PPIs and drug-target knowledge has also been used to support drug repurposing for COVID-19 treatment. CONCLUSION: CIDO represents entities and relations in the domain of coronavirus diseases with a special focus on COVID-19. It supports shared knowledge representation, data and metadata standardization and integration, and has been used in a range of applications.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Coronavirus , Vacunas , Humanos , SARS-CoV-2 , Pandemias , Aminoácidos , Tratamiento Farmacológico de COVID-19
19.
Database (Oxford) ; 20222022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35961013

RESUMEN

Over the last 25 years, biology has entered the genomic era and is becoming a science of 'big data'. Most interpretations of genomic analyses rely on accurate functional annotations of the proteins encoded by more than 500 000 genomes sequenced to date. By different estimates, only half the predicted sequenced proteins carry an accurate functional annotation, and this percentage varies drastically between different organismal lineages. Such a large gap in knowledge hampers all aspects of biological enterprise and, thereby, is standing in the way of genomic biology reaching its full potential. A brainstorming meeting to address this issue funded by the National Science Foundation was held during 3-4 February 2022. Bringing together data scientists, biocurators, computational biologists and experimentalists within the same venue allowed for a comprehensive assessment of the current state of functional annotations of protein families. Further, major issues that were obstructing the field were identified and discussed, which ultimately allowed for the proposal of solutions on how to move forward.


Asunto(s)
Genómica , Proteínas , Secuencia de Bases , Biología Computacional , Genoma , Anotación de Secuencia Molecular
20.
BMC Bioinformatics ; 12: 371, 2011 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-21929785

RESUMEN

BACKGROUND: Representing species-specific proteins and protein complexes in ontologies that are both human- and machine-readable facilitates the retrieval, analysis, and interpretation of genome-scale data sets. Although existing protin-centric informatics resources provide the biomedical research community with well-curated compendia of protein sequence and structure, these resources lack formal ontological representations of the relationships among the proteins themselves. The Protein Ontology (PRO) Consortium is filling this informatics resource gap by developing ontological representations and relationships among proteins and their variants and modified forms. Because proteins are often functional only as members of stable protein complexes, the PRO Consortium, in collaboration with existing protein and pathway databases, has launched a new initiative to implement logical and consistent representation of protein complexes. DESCRIPTION: We describe here how the PRO Consortium is meeting the challenge of representing species-specific protein complexes, how protein complex representation in PRO supports annotation of protein complexes and comparative biology, and how PRO is being integrated into existing community bioinformatics resources. The PRO resource is accessible at http://pir.georgetown.edu/pro/. CONCLUSION: PRO is a unique database resource for species-specific protein complexes. PRO facilitates robust annotation of variations in composition and function contexts for protein complexes within and between species.


Asunto(s)
Bases de Datos de Proteínas , Complejos Multiproteicos , Proteínas/química , Animales , Biología Computacional , Humanos , Internet , Complejos Multienzimáticos , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA