RESUMEN
Thermophoresis allows for the manipulation of colloids in systems containing a temperature gradient. A deep understanding of the phenomena at the molecular level allows for increased control and manipulation strategies. We developed a microscopic model revealing different coupling mechanisms for colloid thermophoresis under local thermodynamic equilibrium conditions. The model has been verified through comparison with a variety of previously published experimental data and shows good agreement across significantly different systems. We found five different temperature-dependent contributions to the Soret coefficient, two from bulk properties and three from interfacial interactions between the fluid medium and the colloid. Our analysis shows that the Soret coefficient for nanosized particles is governed by the competition between the electrostatic and hydration interfacial interactions, while bulk contributions become more pronounced for protein systems. This theory can be used as a guide to design thermophoretic transport, which is relevant for sensing, focusing, and separation at the microscale.
RESUMEN
Thermophoresis has emerged as a powerful tool for characterizing and manipulating colloids at the nano- and micro-scales due to its sensitivity to colloid-solvent interactions. The use of surfactants enables the tailoring of surface chemistry on colloidal particles and the tuning of interfacial interactions. However, the microscopic mechanisms underlying thermophoresis in surfactant solutions remain poorly understood due to the complexity of multiscale interaction coupling. To achieve a more fundamental understanding of the roles of surfactants, we investigated the thermophoretic behavior of silica beads in both ionic and nonionic surfactant solutions at various background temperatures. We provide a complete mechanistic picture of the effects of surfactants on interfacial interactions through mode-coupling analysis of both electrophoretic and thermophoretic experiments. Our results demonstrate that silica thermophoresis is predominantly governed by the dissociation of silanol functional groups at silica-water interfaces in nonionic surfactant solutions, while in ionic surfactant solutions, the primary mechanism driving silica thermophoresis is the adsorption of ionic surfactants onto the silica surface.
RESUMEN
Colloid thermophoresis in aqueous media is vital for numerous applications in nanoscience and life sciences. To date, a general description of colloid thermophoresis in DI water has not been determined. Here, we describe a theoretical model within the framework of the Fokker-Planck formalism and the flickering cluster concept to describe the hydration entropy effect on the thermophoretic behaviour of colloids suspended in DI water and compare this to new experimental results. We built an experimental platform to allow for rapid and robust temperature control and investigate the thermophoretic behaviour of silica microspheres with different sizes at various background temperatures for comparison. In this work, the ionic shielding effect is accounted for by using the well-known Duhr-Dhont's model, and the hydration layer effect is determined using the developed theoretical model. For the latter, our model reveals that the sign of the Soret coefficient is governed by the interplay between the binding energy and the chemical potential of water molecules, which were found to be in the same order of magnitude. We show that our analysis accurately describes the experimental behaviour of colloidal particles that opens a new avenue for developing versatile trapping and separation techniques for various colloidal particles in aqueous systems according to their size and background temperature.
RESUMEN
The influence of shear flow on the nanomechanical properties of cellulose nanocrystal (CNC)/polyethylene glycol (PEG) composite films and the distribution of anisotropic phases are investigated at various CNC/PEG ratios. Here, the drying process of CNC/PEG mixed suspensions is systematically traced by rheology, followed by the spatial mapping of local mechanical properties of CNC/PEG films by nanoindentation. The detailed study of the morphology of CNC/PEG films by polarized optical microscopy (POM) and image analysis revealed the link between the mechanical properties and the influence of shear flow. A comparison of the data obtained for shear-dried films with nonsheared films showed the improved reduced Young's modulus (Er) and hardness (H), and suppression of microphase separation in the shear-dried films. Based on this experimental evidence, a mechanism is proposed to explain the microstructural transition during the shear-drying process leading to the generation of the anisotropic domains containing the shear-induced assembled structure of CNC particles coexisting with the elongated PEG microphases.
Asunto(s)
Celulosa , Nanopartículas , Anisotropía , Celulosa/química , Nanopartículas/química , Polietilenglicoles/química , SuspensionesRESUMEN
A cost-effective scalable chemical route to produce pH-responsive active colloids (ACs) is developed here. For the first time, calcium carbonate particles are half-coated with a silica layer via Pickering emulsion methodology. This methodology allows to create anisotropy on the particles' surfaces and benefit from the decomposition of the calcium carbonate in acidic media to generate self-propulsion. The coupling between the self-diffusiophoretic motion of these ACs and acid concentrations is experimentally investigated in Newtonian media via optical microscopy. With increasing hydrogen-ion concentrations, the pH-responsive colloids experience higher mean-square displacements because of self-propulsion velocities and enhanced long-time diffusivities. Because they are biocompatible and environmentally friendly, these ACs constitute a platform for advanced diagnostics, targeted drug delivery, and water/soil remediation.
RESUMEN
Self-diffusiophoresis of synthetic Janus (Si/Pt) microspheres in the presence of hydrogen peroxide in complex environments is here investigated. We aim to address the single particle dynamics of these active colloids in different viscoelastic fluids. Experimentally, the Janus colloids were dispersed in a dilute polyvinylpyrrolidone (PVP) solution and in a polyacrylamide (PAM) solution in semi-dilute and semi-dilute entangled regime to analyze their Brownian and active motion. These two systems were chosen to probe different relaxation times from relatively short (â¼5 ms) for PVP to large (â¼14.5 s) for PAM but always smaller than the rotary Brownian motion time scale. Within this regime, we investigate the coupling between the self-propulsion velocity and the medium rheology. Janus particles are found to get physically confined by polymeric entanglements but surprisingly they are able to escape the physical cage in a time scale much shorter than the relaxation time of the polymer solution. This is particularly relevant for application of self-propelling particles in biomedicine, water and soil remediation where complex environments are naturally present.
RESUMEN
Wet processing of graphene sheets is a potentially interesting route for the economically viable creation of graphene-based composites. In the present work, flow dichroism and small-angle light scattering are used to investigate the dispersion of functionalized graphene sheets in a suspension and their response to shear flow. In line with expectations from scaling theory at rest, the functionalized graphene sheets are present as Brownian flat sheets, and there is no evidence of significant crumpling. More surprisingly, we find that the rate-dependent orientation of these molecularly thin sheets can be described by numerical predictions for hard spheroidal sheets, making quantitative predictions of the flow-induced orientation possible. Further comparison of the flow-induced orientation of thick gold decahedra with the thin graphene sheets shows that, except for effects of polydispersity, the flow-induced orientation is predicted well quantitatively. Adequate prediction of the effects of flow on the orientation of graphene sheets makes it possible to design wet processed graphene-based composite materials.
RESUMEN
Multifunctional bio-adhesives with tunable mechanical properties are obtained by controlling the orientation of anisotropic particles in a blend of fast-curing hydrogel with an imposed capillary flow. The suspensions' microstructural evolution was monitored by the small-angle light scattering (SALS) method during flow up to the critical Péclet number (Pe≈1) necessary for particle orientation and hydrogel crosslinking. The multifunctional bio-adhesives were obtained by combining flow and UV light exposure for rapid photo-curing of PEGDA medium and freezing titania rods' ordered microstructures. Blending the low- and high-molecular weight of PEGDA polymer improved the mechanical properties of the final hydrogel. All the hydrogel samples were non-cytotoxic up to 72 h after cell culturing. The system shows rapid blood hemostasis and promotes adhesive and cohesive strength matching targeted tissue properties with an applicating methodology compatible with surgical conditions. The developed SALS approach to optimize nanoparticles' microstructures in bio-adhesive applies to virtually any optically transparent nanocomposite and any type of anisotropic nanoparticles. As such, this method enables rational design of bio-adhesives with enhanced anisotropic mechanical properties which can be tailored to potentially any type of tissue.
Asunto(s)
Nanocompuestos , Adhesivos Tisulares , Adhesivos/química , Materiales Biocompatibles/farmacología , Hidrogeles/química , Nanocompuestos/química , Suturas , Adhesivos Tisulares/químicaRESUMEN
Essential organs, such as the heart and liver, contain a unique porous network that allows oxygen and nutrients to be exchanged, with distinct random to ordered regions displaying varying degrees of strength. A novel technique, referred to here as flow-induced lithography, was developed. This technique generates tunable anisotropic three-dimensional (3D) structures. The ink for this bioprinting technique was made of titanium dioxide nanorods (Ti) and kaolinite nanoclay (KLT) dispersed in a GelMA/PEGDA polymeric suspension. By controlling the flow rate, aligned particle microstructures were achieved in the suspensions. The application of UV light to trigger the polymerization of the photoactive prepolymer freezes the oriented particles in the polymer network. Because the viability test was successful in shearing suspensions containing cells, the flow-induced lithography technique can be used with both acellular scaffolds and cell-laden structures. Fabricated hydrogels show outstanding mechanical properties resembling human tissues, as well as significant cell viability (> 95 %) over one week. As a result of this technique and the introduction of bio-ink, a novel approach has been pioneered for developing anisotropic tissue implants utilizing low-viscosity biomaterials.
Asunto(s)
Hidrogeles , Impresión Tridimensional , Estereolitografía , Andamios del Tejido , Hidrogeles/química , Andamios del Tejido/química , Anisotropía , Humanos , Titanio/química , Ingeniería de Tejidos/métodos , Supervivencia Celular , Bioimpresión/métodosRESUMEN
HYPOTHESIS: Magnetic particles are widely used in many adsorption and removal processes. Among the many types of magnetic colloids, magnetic Janus particles offer significant possibilities for the effective removal of several components from aqueous solutions. Nevertheless, the synthesis of structures integrating different types of materials requires scalable fabrication processes to overcome the limitations of the available methodologies. Herein, we hypothesized a fabrication process for dual-surface functionalized magnetic Janus particles. EXPERIMENTS: The primary silica particles with surface-attached amine groups are further asymmetrically modified by iron oxide nanoparticles, exploiting Pickering emulsion and electroless deposition techniques. The dual surface functionality of the particles is designed for its versatility and demonstrated in two wastewater-related applications. FINDINGS: We show that our design can simultaneously remove chromium (VI) and phenol from aqueous solution. The fabricated magnetic-responsive Janus particles are also an effective adsorbent for genomic Deoxyribonucleic acid (DNA) and show superior performance to commercial magnetic beads. Thus, this study provides a novel platform for designing magnetic Janus particles with multifunctional surfaces for wastewater treatment applications.
RESUMEN
Particles can be manipulated by gradients of concentration (diffusiophoresis) and electric potential (electrophoresis) to transport them to desired locations. To establish these gradients, external stimuli are usually required. In this work, we manipulate particles through a self-generated concentration gradient within a PDMS-based microfluidic platform, without directly applying an external field. The interfacial chemistry of the PDMS results in a local increase of hydronium ions, leading to a concentration and electrical potential gradient in the system, which in turn generate a temporary exclusion zone at the pore entrance, extending up to half of the main channel, or 150 µm. With time, this exclusion zone diminishes as equilibrium in the ion concentration is reached. We study the dynamics of the exclusion zone thickness and find that the Sherwood number determines the size and stability of the exclusion zone. Our work shows, that even without introducing external ionic gradients, particle diffusiophoresis is significant in lab-on-a-chip systems. The interfacial chemistry of the microfluidic platform can have a significant influence on particle movement and this should be considered when designing experiments on diffusiophoresis. The observed phenomenon can be employed to design lab-on-a-chip-based sorting of colloidal particles.
RESUMEN
BACKGROUND AND OBJECTIVE: Additive manufacturing of nasopharyngeal (NP) swabs using 3D printing technology presents a viable alternative to address the immediate shortage problem of standard flock-headed swabs for rapid COVID-19 testing. Recently, several geometrical designs have been proposed for 3D printed NP swabs and their clinical trials are already underway. During clinical testing of the NP swabs, one of the key criteria to compare the efficacy of 3D printed swabs with traditional swabs is the collection efficiency. In this study, we report a numerical framework to investigate the collection efficiency of swabs utilizing the computational fluid dynamics (CFD) approach. METHODS: Three-dimensional computational domain comprising of NP swab dipped in the liquid has been considered in this study to mimic the dip test procedure. The volume of fluid (VOF) method has been employed to track the liquid-air interface as the NP swab is pulled out of the liquid. The governing equations of the multiphase model have been solved utilizing finite-volume-based ANSYS Fluent software by imposing appropriate boundary conditions. Taguchi's based design of experiment analysis has also been conducted to evaluate the influence of geometric design parameters on the collection efficiency of NP swabs. The developed model has been validated by comparing the numerically predicted collection efficiency of different 3D printed NP swabs with the experimental findings. RESULTS: Numerical predictions of the CFD model are in good agreement with the experimental results. It has been found that there prevails huge variability in the collection efficiency of the 3D printed designs of NP swabs available in the literature, ranging from 2 µl to 120 µl. Furthermore, even the smallest alteration in the geometric design parameter of the 3D printed NP swab results in significant changes in the amount of fluid captured. CONCLUSIONS: The proposed framework would assist in quantifying the collection efficiency of the 3D printed designs of NP swabs, rapidly and at a low cost. Moreover, we demonstrate that the developed framework can be extended to optimize the designs of 3D printed swabs to drastically improve the performances of the existing designs and achieve comparable efficacy to that of conventionally manufactured swabs.
Asunto(s)
COVID-19 , COVID-19/diagnóstico , Prueba de COVID-19 , Humanos , Hidrodinámica , Nasofaringe , Impresión TridimensionalRESUMEN
Flexible, self-healing and adhesive conductive materials with Young's modulus matching biological tissues are highly desired for applications in bioelectronics. Here, we report self-healing, stretchable, highly adhesive and conductive hydrogels obtained by mixing polyvinyl alcohol, sodium tetraborate and a screen printing paste containing the conducting polymer Poly (3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) and diol additives. The as prepared hydrogels exhibited modelling ability, high adhesion on pig skin (1.96 N/cm2), high plastic stretchability (>10000%), a moderate conductivity, a low compressive modulus (0.3-3.7 KPa), a good strain sensitivity (gauge factor = 3.88 at 500% strain), and remarkable self-healing properties. Epidermal patch electrodes prepared using one of our hydrogels demonstrated high-quality recording of electrocardiography (ECG) and electromyography (EMG) signal. Because of their straightforward fabrication, outstanding mechanical properties and possibility to combine the electrode components in a single material, hydrogels based on PVA, borax and PEDOT:PSS are highly promising for applications in bioelectronics and wearable electronics. STATEMENT OF SIGNIFICANCE: Soft materials with electrical conductivity are investigated for healthcare applications, such as electrodes to measure vital signs that can easily adapt to the shape and the movements of human skin. Conductive hydrogels (i.e. gels containing water) are ideal materials for this purpose due softness and flexibility. In this this work, we report hydrogels obtained mixing an electrically conductive polymer, a water-soluble biocompatible polymer and a salt. These materials show high adhesion on skin, electrical conductivity and ability to self-repair after a mechanical damage. These hydrogels were successfully used to fabricate electrode to measure cardiac and muscular electrical signals.
Asunto(s)
Adhesivos , Hidrogeles , Animales , Conductividad Eléctrica , Electrodos , Alcohol Polivinílico , PorcinosRESUMEN
Polar active particles constitute a wide class of active matter that is able to propel along a preferential direction, given by their polar axis. Here, we demonstrate a generic active mechanism that leads to their spontaneous chiralization through a symmetry-breaking instability. We find that the transition of an active particle from a polar to a chiral symmetry is characterized by the emergence of active rotation and of circular trajectories. The instability is driven by the advection of a solute that interacts differently with the two portions of the particle surface and it occurs through a supercritical pitchfork bifurcation.
RESUMEN
HYPOTHESIS: Controlled particle assembly from a dilute suspension droplet is challenging yet important for many lab-on-a-chip and biosensing applications. The formation of hot spots on the localized surface plasmonic resonance (LSPR) substrates induced by laser excitation can generate microbubbles. These microbubbles, upon the laser removal, shrink and collapse due to electron energy dissipation, leading to guided particle assembly on the LSPR substrate. EXPERIMENTS: After depositing dilute silica particles dispersions on both nanoisland (AuNI) and planar gold (Au) plasmonic substrates (referred to as LSPR and SPR substrates respectively), microbubbles were formed when a laser beam was applied. Particle dispersion concentration, laser power, and the radius of circular laser sequence were varied to produce different sizes of particle clusters on the LSPR substrate after bubble shrinkage upon the laser removal. To stabilize the assembled structures over time, sodium chloride (NaCl) was ad ded to the dispersions. FINDINGS: Even though thermo-plasmonic flow and microbubbles can be produced with SPR substrates, particle assembly is only possible on LSPR substrates because of electron energy dissipation via nanoscale air gaps trapped in the LSPR substrate. By tuning the laser power, the radius of the circular laser sequence, and the particle dispersion concentration, the number of particles in the assembled structure can be controlled. The addition of NaCl to the dispersion can screen the electrostatic charges among the particles and between the particles and substrate, favoring hydrogen bonding and stabilizing the assembled structures for hours. These findings establish a new framework for utilizing nanophotonic chips where particle assembly can be achieved by a single source of light.
Asunto(s)
Nanopartículas del Metal , OroRESUMEN
Hyaluronic acid is a native extra-cellular matrix derivative that promises unique properties, such as anti-inflammatory response and cell-signaling with tissue-specific applications under its bioactive properties. Here, we investigate the importance of the duration of synthesis to obtain photocrosslinkable methacrylated hyaluronic acid (MeHA) with high degree of substitution. MeHA with high degree of substitution can result in rapid photocrosslinking and can be used as a bioink for stereolithographic (SLA) three dimensional 3D bioprinting. Increased degree of substitution results Our findings show that a ten-day synthesis results in an 88% degree of methacrylation (DM), whereas three-day and five-day syntheses result in 32% and 42% DM, respectively. The rheological characterization revealed an increased rate of photopolymerization with increasing DM. Further, we developed a hybrid bioink to overcome the non-cell-adhesive nature of MeHA by combining it with gelatin methacryloyl (GelMA) to fabricate 3D cell-laden hydrogel scaffolds. The hybrid bioink exhibited a 55% enhancement in stiffness compared to MeHA only and enabled cell-adhesion while maintaining high cell viability. Investigations also revealed that the hybrid bioink was a more suitable candidate for stereolithography (SLA) 3D bioprinting than MeHA because of its mechanical strength, printability, and cell-adhesive nature. This research lays out a firm foundation for the development of a stable hybrid bioink with MeHA and GelMA for first-ever use with SLA 3D bioprinting.