Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mov Disord ; 38(12): 2173-2184, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37700489

RESUMEN

BACKGROUND: Excessive glutamatergic transmission in the striatum is implicated in Parkinson's disease (PD) progression. Astrocytes maintain glutamate homeostasis, protecting from excitotoxicity through the glutamate-aspartate transporter (GLAST), whose alterations have been reported in PD. Noninvasive brain stimulation using intermittent theta-burst stimulation (iTBS) acts on striatal neurons and glia, inducing neuromodulatory effects and functional recovery in experimental parkinsonism. OBJECTIVE: Because PD is associated with altered astrocyte function, we hypothesized that acute iTBS, known to rescue striatal glutamatergic transmission, exerts regional- and cell-specific effects through modulation of glial functions. METHODS: 6-Hydroxydopamine-lesioned rats were exposed to acute iTBS, and the areas predicted to be more responsive by a biophysical, hyper-realistic computational model that faithfully reconstructs the experimental setting were analyzed. The effects of iTBS on glial cells and motor behavior were evaluated by molecular and morphological analyses, and CatWalk and Stepping test, respectively. RESULTS: As predicted by the model, the hippocampus, cerebellum, and striatum displayed a marked c-FOS activation after iTBS, with the striatum showing specific morphological and molecular changes in the astrocytes, decreased phospho-CREB levels, and recovery of GLAST. Striatal-dependent motor performances were also significantly improved. CONCLUSION: These data uncover an unknown iTBS effect on astrocytes, advancing the understanding of the complex mechanisms involved in TMS-mediated functional recovery. Data on numerical dosimetry, obtained with a degree of anatomical details never before considered and validated by the biological findings, provide a framework to predict the electric-field induced in different specific brain areas and associate it with functional and molecular changes. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Ratas , Animales , Astrocitos , Estimulación Magnética Transcraneal , Trastornos Parkinsonianos/terapia , Cuerpo Estriado , Fenómenos Magnéticos
2.
Neurobiol Dis ; 158: 105448, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34280523

RESUMEN

INTRODUCTION: Plasticity at corticostriatal synapses is a key substrate for a variety of brain functions - including motor control, learning and reward processing - and is often disrupted in disease conditions. Despite intense research pointing toward a dynamic interplay between glutamate, dopamine (DA), and serotonin (5-HT) neurotransmission, their precise circuit and synaptic mechanisms regulating their role in striatal plasticity are still unclear. Here, we analyze the role of serotonergic raphe-striatal innervation in the regulation of DA-dependent corticostriatal plasticity. METHODS: Mice (males and females, 2-6 months of age) were housed in standard plexiglass cages at constant temperature (22 ± 1°C) and maintained on a 12/12h light/dark cycle with food and demineralized water ad libitum. In the present study, we used a knock-in mouse line in which the green fluorescent protein reporter gene (GFP) replaced the I Tph2 exon (Tph2GFP mice), allowing selective expression of GFP in the whole 5-HT system, highlighting both somata and neuritis of serotonergic neurons. Heterozygous, Tph2+/GFP, mice were intercrossed to obtain experimental cohorts, which included Wild-type (Tph2+/+), Heterozygous (Tph2+/GFP), and Mutant serotonin-depleted (Tph2GFP/GFP) animals. RESULTS: Using male and female mice, carrying on different Tph2 gene dosages, we show that Tph2 gene modulation results in sex-specific corticostriatal abnormalities, encompassing the abnormal amplitude of spontaneous glutamatergic transmission and the loss of Long Term Potentiation (LTP) in Tph2GFP/GFP mice of both sexes, while this form of plasticity is normally expressed in control mice (Tph2+/+). Once LTP is induced, only the Tph2+/GFP female mice present a loss of synaptic depotentiation. CONCLUSION: We showed a relevant role of the interaction between dopaminergic and serotonergic systems in controlling striatal synaptic plasticity. Overall, our data unveil that 5-HT plays a primary role in regulating DA-dependent corticostriatal plasticity in a sex-related manner and propose altered 5-HT levels as a critical determinant of disease-associated plasticity defects.


Asunto(s)
Neostriado/fisiología , Plasticidad Neuronal/fisiología , Serotonina/fisiología , Sinapsis/fisiología , Animales , Animales Modificados Genéticamente , Fenómenos Electrofisiológicos , Femenino , Ácido Glutámico/fisiología , Potenciación a Largo Plazo , Masculino , Ratones , Fibras Nerviosas , Enfermedad de Parkinson Secundaria/fisiopatología , Caracteres Sexuales , Transmisión Sináptica/fisiología , Triptófano Hidroxilasa/metabolismo
3.
Mov Disord ; 36(10): 2254-2263, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34339069

RESUMEN

BACKGROUND: In experimental models of Parkinson's disease (PD), different degrees of degeneration to the nigrostriatal pathway produce distinct profiles of synaptic alterations that depend on progressive changes in N-methyl-D-aspartate receptors (NMDAR)-mediated functions. Repetitive transcranial magnetic stimulation (rTMS) induces modifications in glutamatergic and dopaminergic systems, suggesting that it may have an impact on glutamatergic synapses modulated by dopamine neurotransmission. However, no studies have so far explored the mechanisms of rTMS effects at early stages of PD. OBJECTIVES: We tested the hypothesis that in vivo application of rTMS with intermittent theta-burst stimulation (iTBS) pattern alleviates corticostriatal dysfunctions by modulating NMDAR-dependent plasticity in a rat model of early parkinsonism. METHODS: Dorsolateral striatal spiny projection neurons (SPNs) activity was studied through ex vivo whole-cell patch-clamp recordings in corticostriatal slices obtained from 6-hydroxydopamine-lesioned rats, subjected to a single session (acute) of iTBS and tested for forelimb akinesia with the stepping test. Immunohistochemical analyses were performed to analyze morphological correlates of plasticity in SPNs. RESULTS: Acute iTBS ameliorated limb akinesia and rescued corticostriatal long-term potentiation (LTP) in SPNs of partially lesioned rats. This effect was abolished by applying a selective inhibitor of GluN2B-subunit-containing NMDAR, suggesting that iTBS treatment could be associated with an enhanced activation of specific NMDAR subunits, which are major regulators of structural plasticity during synapse development. Morphological analyses of SPNs revealed that iTBS treatment reverted dendritic spine loss inducing a prevalence of thin-elongated spines in the biocytin-filled SPNs. CONCLUSIONS: Taken together, our data identify that an acute iTBS treatment produces a series of plastic changes underlying striatal compensatory adaptation in the parkinsonian basal ganglia circuit. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Dopamina , Estimulación Magnética Transcraneal , Animales , Cuerpo Estriado , Plasticidad Neuronal , Ratas , Sinapsis
4.
Int J Mol Sci ; 22(4)2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33671915

RESUMEN

Food restriction is a robust nongenic, nonsurgical and nonpharmacologic intervention known to improve health and extend lifespan in various species. Food is considered the most essential and frequently consumed natural reward, and current observations have demonstrated homeostatic responses and neuroadaptations to sustained intermittent or chronic deprivation. Results obtained to date indicate that food deprivation affects glutamatergic synapses, favoring the insertion of GluA2-lacking α-Ammino-3-idrossi-5-Metil-4-idrossazol-Propionic Acid receptors (AMPARs) in postsynaptic membranes. Despite an increasing number of studies pointing towards specific changes in response to dietary restrictions in brain regions, such as the nucleus accumbens and hippocampus, none have investigated the long-term effects of such practice in the dorsal striatum. This basal ganglia nucleus is involved in habit formation and in eating behavior, especially that based on dopaminergic control of motivation for food in both humans and animals. Here, we explored whether we could retrieve long-term signs of changes in AMPARs subunit composition in dorsal striatal neurons of mice acutely deprived for 12 hours/day for two consecutive days by analyzing glutamatergic neurotransmission and the principal forms of dopamine and glutamate-dependent synaptic plasticity. Overall, our data show that a moderate food deprivation in experimental animals is a salient event mirrored by a series of neuroadaptations and suggest that dietary restriction may be determinant in shaping striatal synaptic plasticity in the physiological state.


Asunto(s)
Cuerpo Estriado/metabolismo , Ayuno/fisiología , Privación de Alimentos/fisiología , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Sinapsis/metabolismo , Animales , Dietoterapia , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores AMPA/metabolismo , Transmisión Sináptica/fisiología
5.
J Neurosci Res ; 97(12): 1655-1664, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31498496

RESUMEN

Huntington's disease (HD) is a genetic neurodegenerative condition characterized by abnormal dopamine (DA)-glutamate interactions, severe alterations in motor control, and reduced behavioral flexibility. Experimental models of disease show that during symptomatic phases, HD shares with other hyperkinetic disorders the loss of synaptic depotentiation in the striatal spiny projection neurons (SPNs). Here we test the hypothesis that corticostriatal long-term depression (LTD), a well-conserved synaptic scaling down response to environmental stimuli, is also altered in symptomatic male R6/1 mice, a HD model with gradual development of symptoms. In vitro patch-clamp and intracellular recordings of corticostriatal slices from R6/1 mice confirm that, similar to other models characterized by hyperkinesia and striatal DA D1 receptor pathway dysregulation, once long-term potentiation (LTP) is induced, synaptic depotentiation is lost. Our new observations show that activity-dependent LTD was abolished in SPNs of mutant mice. In an experimental condition in which N-methyl-d-aspartate (NMDA) receptors are normally not recruited, in vitro bath application of DA revealed an abnormal response of D1 receptors that caused a shift in synaptic plasticity direction resulting in an NMDA-dependent LTP. Our results demonstrate that corticostriatal LTD is lost in R6/1 mouse model and confirm the role of aberrant DA-glutamate interactions in the alterations of synaptic scaling down associated with HD symptoms.


Asunto(s)
Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Enfermedad de Huntington/fisiopatología , Depresión Sináptica a Largo Plazo , Potenciales de Acción , Animales , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores , Masculino , Ratones Transgénicos
6.
Mov Disord ; 34(6): 821-831, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31002748

RESUMEN

BACKGROUND: Prolonged dopaminergic replacement therapy in PD results in pulsatile dopamine receptors stimulation in both dorsal and ventral striatum causing wearing off, motor fluctuations, and nonmotor side effects such as behavioral addictions. Among impulse control disorders, binge eating can be easily modeled in laboratory animals. OBJECTIVES: We hypothesize that manipulation of dopamine levels in a 6-hydroxydopamine-lesioned rats, as a model of PD characterized by a different extent of dopamine denervation between dorsal and ventral striatum, would influence both synaptic plasticity of the nucleus accumbens and binge-like eating behavior. METHODS: Food preference, food intake, and weight gain were monitored in sham-operated and unilaterally lesioned rats, subjected to a modified version of Corwin's limited access protocol, modelling binge eating disorder. Electrophysiological properties and long-term potentiation of GABAergic spiny projection neurons of the nucleus accumbens core were studied through ex vivo intracellular and patch-clamp recordings from corticostriatal slices of naïve and l-dopa-treated rats. RESULTS: Sham-operated animals with intact nucleus accumbens core plasticity reliably developed food-addiction-like behavior when exposed to intermittent access to a highly palatable food. In contrast, parkinsonian rats were unresponsive to such restriction regimens, and also plasticity was lost in ventral spiny neurons. Chronic l-dopa reestablished long-term potentiation and compulsive eating, but with a different temporal dynamic that follows that of drug administration. CONCLUSIONS: Our data indicate that endogenous and exogenous dopamine drive binge-like consumption of a palatable food in healthy and parkinsonian rats with distinct temporal dynamics, providing new insights into the complexity of l-dopa effects on the mesolimbic dopaminergic system. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Dopaminérgicos/farmacología , Ingestión de Alimentos/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Levodopa/farmacología , Trastornos Parkinsonianos/fisiopatología , Animales , Preferencias Alimentarias/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiopatología , Oxidopamina , Trastornos Parkinsonianos/inducido químicamente , Ratas , Ratas Wistar , Aumento de Peso/efectos de los fármacos
8.
Cell Death Dis ; 14(3): 176, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859484

RESUMEN

Although the discovery of the critical role of α-synuclein (α-syn) in the pathogenesis of Parkinson's disease (PD) is now twenty-five years old, it still represents a milestone in PD research. Abnormal forms of α-syn trigger selective and progressive neuronal death through mitochondrial impairment, lysosomal dysfunction, and alteration of calcium homeostasis not only in PD but also in other α-syn-related neurodegenerative disorders such as dementia with Lewy bodies, multiple system atrophy, pure autonomic failure, and REM sleep behavior disorder. Furthermore, α-syn-dependent early synaptic and plastic alterations and the underlying mechanisms preceding overt neurodegeneration have attracted great interest. In particular, the presence of early inflammation in experimental models and PD patients, occurring before deposition and spreading of α-syn, suggests a mechanistic link between inflammation and synaptic dysfunction. The knowledge of these early mechanisms is of seminal importance to support the research on reliable biomarkers to precociously identify the disease and possible disease-modifying therapies targeting α-syn. In this review, we will discuss these critical issues, providing a state of the art of the role of this protein in early PD and other synucleinopathies.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Humanos , alfa-Sinucleína , Inflamación , Cuerpos de Lewy
9.
Sci Adv ; 9(28): eadh1403, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37450585

RESUMEN

Intensive physical activity improves motor functions in patients with Parkinson's disease (PD) at early stages. However, the mechanisms underlying the beneficial effects of exercise on PD-associated neuronal alterations have not been fully clarified yet. Here, we tested the hypothesis that an intensive treadmill training program rescues alterations in striatal plasticity and early motor and cognitive deficits in rats receiving an intrastriatal injection of alpha-synuclein (α-syn) preformed fibrils. Improved motor control and visuospatial learning in active animals were associated with a recovery of dendritic spine density alterations and a lasting rescue of a physiological corticostriatal long-term potentiation (LTP). Pharmacological analyses of LTP show that modulations of N-methyl-d-aspartate receptors bearing GluN2B subunits and tropomyosin receptor kinase B, the main brain-derived neurotrophic factor receptor, are involved in these beneficial effects. We demonstrate that intensive exercise training has effects on the early plastic alterations induced by α-syn aggregates and reduces the spread of toxic α-syn species to other vulnerable brain areas.


Asunto(s)
Enfermedad de Parkinson , Ratas , Animales , Enfermedad de Parkinson/terapia , Plasticidad Neuronal/fisiología , Cuerpo Estriado , Potenciación a Largo Plazo/fisiología , Cognición
10.
Neuropharmacology ; 218: 109205, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35940348

RESUMEN

By decreasing glutamate transmission, mGlu4 receptor positive allosteric modulators (mGlu4-PAM), in combination with levodopa (l-DOPA) may restore the synergy between glutamatergic and dopaminergic transmissions, thus maximizing the improvement of motor function in Parkinson's disease (PD). This study aimed to clarify the effects of foliglurax, a selective mGlu4-PAM, on the loss of bidirectional synaptic plasticity associated with l-DOPA-induced dyskinesia (LID). Behavioral assessments compared dyskinesia intensity in 6-hydroxydopamine (6-OHDA)-lesioned rats treated with l-DOPA or l-DOPA plus foliglurax. In slices from the same rats, patch-clamp techniques were used to examine electrophysiological differences in glutamatergic synapses, evaluating the EPSCs mediated by NMDA and AMPA receptors in striatal spiny projection neurons. High-frequency stimulation of corticostriatal fibers was used as long-term potentiation (LTP)-inducing protocol. Conversely, 15 min of low-frequency stimulation was applied to depotentiate LTP. The density of dendritic spines was measured in striatal slices in the same experimental conditions. Our results show that, in corticostriatal slices, foliglurax decreased spontaneous glutamatergic transmission in both sham-operated and 6-OHDA lesioned rats. When co-administered with l-DOPA in 6-OHDA-lesioned rats, foliglurax fully restored dendritic spine density in a dose-dependent manner. Moreover, this co-treatment rescued striatal bidirectional plasticity and attenuated the intensity of l-DOPA-induced dyskinesia. This is the first demonstration in an animal model of PD and dyskinesia that a mGlu4 PAM can restore striatal synaptic plasticity.


Asunto(s)
Discinesia Inducida por Medicamentos , Enfermedad de Parkinson , Trastornos Parkinsonianos , Animales , Antiparkinsonianos/efectos adversos , Cuerpo Estriado , Modelos Animales de Enfermedad , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Levodopa/efectos adversos , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Ratas
11.
Cell Death Discov ; 7(1): 295, 2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34657122

RESUMEN

Patients affected by chronic kidney disease (CKD) have an increased risk of developing cognitive impairment. The cause of mental health disorders in CKD and in chronic hemodialysis patients is multifactorial, due to the interaction of classical cardiovascular disease risk factors, kidney- and dialysis-related risk factors with depression, and multiple drugs overuse. A large number of compounds, defined as uremic toxins that normally are excreted by healthy kidneys, accumulate in the circulations, in the tissues, and in the organs of CKD patients. Among the candidate uremic toxins are several guanidino compounds, such as Guanidine. Uremic toxins may also accumulate in the brain and may have detrimental effects on cerebral resident cells (neurons, astrocytes, microglia) and microcirculation. The present study aims to analyze the effect of Guanidine on hippocampal excitatory postsynaptic field potentials (fEPSPs) and in CA1 pyramidal neurons recorded intracellularly. Moreover, we compared these effects with the alterations induced in vitro by CKD patients derived serum samples. Our results show an increased, dose-dependent, synaptic activity in the CA1 area in response to both synthetic Guanidine and patient's serum, through a mechanism involving glutamatergic transmission. In particular, the concomitant increase of both NMDA and AMPA component of the excitatory postsynaptic currents (EPSCs) suggests a presynaptic mechanism. Interestingly, in presence of the lower dose of guanidine, we measure a significant reduction of EPSCs, in fact the compound does not inhibit GABA receptors allowing their inhibitory effect of glutamate release. These findings suggest that cognitive symptoms induced by the increase of uremic compounds in the serum of CKD patients are caused, at least in part, by an increased glutamatergic transmission in the hippocampus.

12.
Front Aging Neurosci ; 12: 230, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848709

RESUMEN

Levodopa (L-DOPA) treatment is the main gold-standard therapy for Parkinson disease (PD). Besides good antiparkinsonian effects, prolonged use of this drug is associated to the development of involuntary movements known as L-DOPA-induced dyskinesia (LID). L-DOPA-induced dyskinesia is linked to a sensitization of dopamine (DA) D1 receptors located on spiny projection neurons (SPNs) of the dorsal striatum. Several evidences have shown that the emergence of LID can be related to striatal D1/cAMP/PKA/DARPP-32 and extracellular signal-regulated kinases (ERK1/2) pathway overactivation associated to aberrant N-methyl-d-aspartate (NMDA) receptor function. In addition, within striatum, ERK1/2 is also able to modulate in a D1 receptor-dependent manner the activity of the mammalian target of rapamycin complex 1 (mTORC1) pathway under DA depletion and L-DOPA therapy. Consistently, increased mTORC1 signaling appears during chronic administration of L-DOPA and shows a high correlation with the severity of dyskinesia. Furthermore, the abnormal activation of the D1/PKA/DARPP-32 cascade is paralleled by increased phosphorylation of the GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor at the PKA Ser845 site. The GluA1 promotes excitatory AMPA receptor-mediated transmission and may be implicated in the alterations found at the corticostriatal synapses of dyskinetic animals. In our study, we investigated the role of mTORC1 pathway activation in modulating bidirectional striatal synaptic plasticity in L-DOPA-treated parkinsonian rats. Inhibition of mTORC1 by coadministration of rapamycin to L-DOPA was able to limit the magnitude of LID expression, accounting for a therapeutic effect of this drug. In particular, behavioral data showed that, in L-DOPA-treated rats, rapamycin administration induced a selective decrease of distinct components of abnormal involuntary movements (i.e., axial and orolingual dyskinesia). Furthermore, ex vivo patch clamp and intracellular recordings of SPNs revealed that pharmacological inhibition of mTORC1 also resulted associated with a physiological bidirectional plasticity, when compared to dyskinetic rats treated with L-DOPA alone. This study uncovers the important role of mTORC1 inhibition to prevent the loss of striatal bidirectional plasticity under chronic L-DOPA treatment in rodent models of PD.

13.
Nat Commun ; 10(1): 3945, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477726

RESUMEN

Neuroinflammation is one of the hallmarks of Parkinson's disease (PD) and may contribute to midbrain dopamine (DA) neuron degeneration. Recent studies link chronic inflammation with failure to resolve early inflammation, a process operated by specialized pro-resolving mediators, including resolvins. However, the effects of stimulating the resolution of inflammation in PD - to modulate disease progression - still remain unexplored. Here we show that rats overexpressing human α-synuclein (Syn) display altered DA neuron properties, reduced striatal DA outflow and motor deficits prior to nigral degeneration. These early alterations are coupled with microglia activation and perturbations of inflammatory and pro-resolving mediators, namely IFN-γ and resolvin D1 (RvD1). Chronic and early RvD1 administration in Syn rats prevents central and peripheral inflammation, as well as neuronal dysfunction and motor deficits. We also show that endogenous RvD1 is decreased in human patients with early-PD. Our results suggest there is an imbalance between neuroinflammatory and pro-resolving processes in PD.


Asunto(s)
Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/administración & dosificación , Inflamación/prevención & control , Degeneración Nerviosa/prevención & control , Enfermedad de Parkinson/prevención & control , Animales , Ácidos Docosahexaenoicos/genética , Ácidos Docosahexaenoicos/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Humanos , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
16.
Cardiovasc Hematol Agents Med Chem ; 7(4): 305-12, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19607642

RESUMEN

BACKGROUND: In the management of hematological malignancies, chemotherapy-induced mucositis is an increasingly recognized problem, leading to potentially severe clinical complications, treatment delays, increased costs and impairment of patient's quality of life. Many forms of cytotoxic treatments given in this setting may induce several degrees of mucositis. In particular, conditioning therapy with hematopoietic stem cell transplantation (HSCT) induces a disruption of the mucosal barrier function throughout the entire gastrointestinal tract facilitating the spreading of bacteria and endotoxin with subsequent increased risk of septicemia and, in the allogeneic setting, a worsening of Graft Versus Host Disease (GVHD). OBJECTIVES: To review the role of palifermin and of other existing and potential treatments for chemotherapy-induced mucositis in the context of current knowledge of pathobiology in the setting of hematological malignancies. METHODS: We searched for palifermin and mucositis of any region of the gastrointestinal tract using Medline; the abstract books of the most important hematological and oncological meetings were also reviewed. RESULTS/CONCLUSIONS: The pathobiology of mucositis is complex, and agents that target mechanisms to prevent mucositis or accelerate healing are highly required. In this regard, palifermin (recombinant human keratinocyte growth factor) has been demonstrated to reduce the severity and the duration of oral mucositis and to significantly improve several treatment outcomes in patients submitted to autologous HSCT; data are insufficient to recommend its use in the non-autologous HSCT settings, although interesting properties of this agent deserves other investigations in order to explore other possible indications.


Asunto(s)
Antineoplásicos/uso terapéutico , Factor 7 de Crecimiento de Fibroblastos/uso terapéutico , Neoplasias Hematológicas/tratamiento farmacológico , Mucositis/tratamiento farmacológico , Humanos , Mucositis/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA