Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 18(10): e0287323, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37812647

RESUMEN

INTRODUCTION AND BACKGROUND: Pre-MicroRNAs are the hairpin loops from which microRNAs are produced that have been found to negatively regulate gene expression in several organisms. In insects, microRNAs participate in several biological processes including metamorphosis, reproduction, immune response, etc. Numerous tools have been designed in recent years to predict novel pre-microRNA using binary machine learning classifiers where prediction models are trained with true and pseudo pre-microRNA hairpin loops. Currently, there are no existing tool that is exclusively designed for insect pre-microRNA detection. AIM: Application of machine learning algorithms to develop an open source tool for prediction of novel precursor microRNA in insects and search for their miRNA targets in the model insect organism, Drosophila melanogaster. METHODS: Machine learning algorithms such as Random Forest, Support Vector Machine, Logistic Regression and K-Nearest Neighbours were used to train insect true and false pre-microRNA features with 10-fold Cross Validation on SMOTE and Near-Miss datasets. miRNA targets IDs were collected from miRTarbase and their corresponding transcripts were collected from FlyBase. We used miRanda algorithm for the target searching. RESULTS: In our experiment, SMOTE performed significantly better than Near-Miss for which it was used for modelling. We kept the best performing parameters after obtaining initial mean accuracy scores >90% of Cross Validation. The trained models on Support Vector Machine achieved accuracy of 92.19% while the Random Forest attained an accuracy of 80.28% on our validation dataset. These models are hosted online as web application called RNAinsecta. Further, searching target for the predicted pre-microRNA in Drosophila melanogaster has been provided in RNAinsecta.


Asunto(s)
MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Programas Informáticos , Algoritmos , Aprendizaje Automático , Máquina de Vectores de Soporte
2.
Sci Rep ; 12(1): 7028, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35487927

RESUMEN

Uziflies (Family: Tachinidae) are dipteran endoparasites of sericigenous insects which cause major economic loss in the silk industry globally. Here, we are presenting the first full mitogenome of Blepharipa sp. (Acc: KY644698, 15,080 bp, A + T = 78.41%), a dipteran parasitoid of Muga silkworm (Antheraea assamensis) found in the Indian states of Assam and Meghalaya. This study has confirmed that Blepharipa sp. mitogenome gene content and arrangement is similar to other Tachinidae and Sarcophagidae flies of Oestroidea superfamily, typical of ancestral Diptera. Although, Calliphoridae and Oestridae flies have undergone tRNA translocation and insertion, forming unique intergenic spacers (IGS) and overlapping regions (OL) and a few of them (IGS, OL) have been conserved across Oestroidea flies. The Tachinidae mitogenomes exhibit more AT content and AT biased codons in their protein-coding genes (PCGs) than the Oestroidea counterpart. About 92.07% of all (3722) codons in PCGs of this new species have A/T in their 3rd codon position. The high proportion of AT and repeats in the control region (CR) affects sequence coverage, resulting in a short CR (Blepharipa sp.: 168 bp) and a smaller tachinid mitogenome. Our research unveils those genes with a high AT content had a reduced effective number of codons, leading to high codon usage bias. The neutrality test shows that natural selection has a stronger influence on codon usage bias than directed mutational pressure. This study also reveals that longer PCGs (e.g., nad5, cox1) have a higher codon usage bias than shorter PCGs (e.g., atp8, nad4l). The divergence rates increase nonlinearly as AT content at the 3rd codon position increases and higher rate of synonymous divergence than nonsynonymous divergence causes strong purifying selection. The phylogenetic analysis explains that Blepharipa sp. is well suited in the family of insectivorous tachinid maggots. It's possible that biased codon usage in the Tachinidae family reduces the effective number of codons, and purifying selection retains the core functions in their mitogenome, which could help with efficient metabolism in their endo-parasitic life style and survival strategy.


Asunto(s)
Dípteros , Genoma Mitocondrial , Animales , Codón/genética , Uso de Codones , Dípteros/genética , Genoma Mitocondrial/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA