Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Glia ; 70(7): 1251-1266, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35244976

RESUMEN

Reactive astrocytes at the border of damaged neuronal tissue organize into a barrier surrounding the fibrotic lesion core, separating this central region of inflammation and fibrosis from healthy tissue. Astrocytes are essential to form the border and for wound repair but interfere with neuronal regeneration. However, the mechanisms driving these astrocytes during central nervous system (CNS) disease are unknown. Here we show that blood-derived fibrinogen is enriched at the interface of lesion border-forming elongated astrocytes after cortical brain injury. Anticoagulant treatment depleting fibrinogen reduces astrocyte reactivity, extracellular matrix deposition and inflammation with no change in the spread of inflammation, whereas inhibiting fibrinogen conversion into fibrin did not significantly alter astrocyte reactivity, but changed the deposition of astrocyte extracellular matrix. RNA sequencing of fluorescence-activated cell sorting-isolated astrocytes of fibrinogen-depleted mice after cortical injury revealed repressed gene expression signatures associated with astrocyte reactivity, extracellular matrix deposition and immune-response regulation, as well as increased gene expression signatures associated with astrocyte metabolism and astrocyte-neuron communication. Systemic pharmacologic depletion of fibrinogen resulted in the absence of elongated, border-forming astrocytes and increased the survival of neurons in the lesion core after cortical injury. These results identify fibrinogen as a critical trigger for lesion border-forming astrocyte properties in CNS disease.


Asunto(s)
Astrocitos , Gliosis , Animales , Astrocitos/metabolismo , Sistema Nervioso Central/metabolismo , Fibrinógeno/metabolismo , Gliosis/patología , Inflamación/metabolismo , Ratones
2.
Cell Tissue Res ; 387(3): 433-449, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34302526

RESUMEN

Neural stem/progenitor cells (NSPCs) are found in the adult brain and spinal cord, and endogenous or transplanted NSPCs contribute to repair processes and regulate immune responses in the CNS. However, the molecular mechanisms of NSPC survival and integration as well as their fate determination and functionality are still poorly understood. Inhibitor of DNA binding (Id) proteins are increasingly recognized as key determinants of NSPC fate specification. Id proteins act by antagonizing the DNA-binding activity of basic helix-loop-helix (bHLH) transcription factors, and the balance of Id and bHLH proteins determines cell fate decisions in numerous cell types and developmental stages. Id proteins are central in responses to environmental changes, as they occur in CNS injury and disease, and cellular responses in adult NSPCs implicate Id proteins as prime candidates for manipulating stemcell behavior. Here, we outline recent advances in understanding Id protein pleiotropic functions in CNS diseases and propose an integrated view of Id proteins and their promise as potential targets in modifying stemcell behavior to ameliorate CNS disease.


Asunto(s)
Células Madre Adultas , Enfermedades del Sistema Nervioso Central , Células-Madre Neurales , Células Madre Adultas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Enfermedades del Sistema Nervioso Central/terapia , Humanos , Células-Madre Neurales/metabolismo
3.
Cell Tissue Res ; 387(3): 415-431, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34698916

RESUMEN

Stroke is the leading cause of adult disability. Endogenous neural stem/progenitor cells (NSPCs) originating from the subventricular zone (SVZ) contribute to the brain repair process. However, molecular mechanisms underlying CNS disease-induced SVZ NSPC-redirected migration to the lesion area are poorly understood. Here, we show that genetic depletion of the p75 neurotrophin receptor (p75NTR-/-) in mice reduced SVZ NSPC migration towards the lesion area after cortical injury and that p75NTR-/- NSPCs failed to migrate upon BDNF stimulation in vitro. Cortical injury rapidly increased p75NTR abundance in SVZ NSPCs via bone morphogenetic protein (BMP) receptor signaling. SVZ-derived p75NTR-/- NSPCs revealed an altered cytoskeletal network- and small GTPase family-related gene and protein expression. In accordance, BMP-treated non-migrating p75NTR-/- NSPCs revealed an altered morphology and α-tubulin expression compared to BMP-treated migrating wild-type NSPCs. We propose that BMP-induced p75NTR abundance in NSPCs is a regulator of SVZ NSPC migration to the lesion area via regulation of the cytoskeleton following cortical injury.


Asunto(s)
Células-Madre Neurales , Accidente Cerebrovascular , Animales , Ventrículos Laterales/metabolismo , Ratones , Neurogénesis , Receptor de Factor de Crecimiento Nervioso/metabolismo
4.
Adv Healthc Mater ; 9(4): e1901347, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31943855

RESUMEN

Substrates for neuron culture and implantation are required to be both biocompatible and display surface compositions that support cell attachment, growth, differentiation, and neural activity. Laminin, a naturally occurring extracellular matrix protein is the most widely used substrate for neuron culture and fulfills some of these requirements, however, it is expensive, unstable (compared to synthetic materials), and prone to batch-to-batch variation. This study uses a high-throughput polymer screening approach to identify synthetic polymers that supports the in vitro culture of primary mouse cerebellar neurons. This allows the identification of materials that enable primary cell attachment with high viability even under "serum-free" conditions, with materials that support both primary cells and neural progenitor cell attachment with high levels of neuronal biomarker expression, while promoting progenitor cell maturation to neurons.


Asunto(s)
Células-Madre Neurales , Neuronas , Animales , Diferenciación Celular , Células Cultivadas , Laminina , Ratones , Polímeros
5.
Nat Commun ; 11(1): 630, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32005867

RESUMEN

Neural stem/progenitor cells (NSPCs) originating from the subventricular zone (SVZ) contribute to brain repair during CNS disease. The microenvironment within the SVZ stem cell niche controls NSPC fate. However, extracellular factors within the niche that trigger astrogliogenesis over neurogenesis during CNS disease are unclear. Here, we show that blood-derived fibrinogen is enriched in the SVZ niche following distant cortical brain injury in mice. Fibrinogen inhibited neuronal differentiation in SVZ and hippocampal NSPCs while promoting astrogenesis via activation of the BMP receptor signaling pathway. Genetic and pharmacologic depletion of fibrinogen reduced astrocyte formation within the SVZ after cortical injury, reducing the contribution of SVZ-derived reactive astrocytes to lesion scar formation. We propose that fibrinogen is a regulator of NSPC-derived astrogenesis from the SVZ niche via BMP receptor signaling pathway following injury.


Asunto(s)
Astrocitos/citología , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Fibrinógeno/metabolismo , Ventrículos Laterales/citología , Células-Madre Neurales/citología , Neurogénesis , Animales , Astrocitos/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Proteínas Morfogenéticas Óseas/metabolismo , Regulación de la Expresión Génica , Hipocampo/citología , Hipocampo/metabolismo , Ventrículos Laterales/metabolismo , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA