Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Pathog ; 6(5): e1000880, 2010 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-20463810

RESUMEN

The HIV-1 envelope glycoprotein (Env) composed of the receptor binding domain gp120 and the fusion protein subunit gp41 catalyzes virus entry and is a major target for therapeutic intervention and for neutralizing antibodies. Env interactions with cellular receptors trigger refolding of gp41, which induces close apposition of viral and cellular membranes leading to membrane fusion. The energy released during refolding is used to overcome the kinetic barrier and drives the fusion reaction. Here, we report the crystal structure at 2 A resolution of the complete extracellular domain of gp41 lacking the fusion peptide and the cystein-linked loop. Both the fusion peptide proximal region (FPPR) and the membrane proximal external region (MPER) form helical extensions from the gp41 six-helical bundle core structure. The lack of regular coiled-coil interactions within FPPR and MPER splay this end of the structure apart while positioning the fusion peptide towards the outside of the six-helical bundle and exposing conserved hydrophobic MPER residues. Unexpectedly, the section of the MPER, which is juxtaposed to the transmembrane region (TMR), bends in a 90 degrees-angle sideward positioning three aromatic side chains per monomer for membrane insertion. We calculate that this structural motif might facilitate the generation of membrane curvature on the viral membrane. The presence of FPPR and MPER increases the melting temperature of gp41 significantly in comparison to the core structure of gp41. Thus, our data indicate that the ordered assembly of FPPR and MPER beyond the core contributes energy to the membrane fusion reaction. Furthermore, we provide the first structural evidence that part of MPER will be membrane inserted within trimeric gp41. We propose that this framework has important implications for membrane bending on the viral membrane, which is required for fusion and could provide a platform for epitope and lipid bilayer recognition for broadly neutralizing gp41 antibodies.


Asunto(s)
Proteína gp41 de Envoltorio del VIH/química , VIH-1/química , Proteínas de la Fusión de la Membrana/química , Proteínas Virales de Fusión/química , Anticuerpos Neutralizantes/inmunología , Cristalografía , Epítopos/química , Anticuerpos Anti-VIH/inmunología , Proteína gp41 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Proteínas de la Fusión de la Membrana/inmunología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Virales de Fusión/inmunología
2.
Proc Natl Acad Sci U S A ; 106(50): 21115-20, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19940251

RESUMEN

Bacterial DNA replication requires DnaA, an AAA+ ATPase that initiates replication at a specific chromosome region, oriC, and is regulated by species-specific regulators that directly bind DnaA. HobA is a DnaA binding protein, recently identified as an essential regulator of DNA replication in Helicobacter pylori. We report the crystal structure of HobA in complex with domains I and II of DnaA (DnaA(I-II)) from H. pylori, the first structure of DnaA bound to one of its regulators. Biochemical characterization of the complex formed shows that a tetramer of HobA binds four DnaA(I-II) molecules, and that DnaA(I-II) is unable to oligomerize by itself. Mutagenesis and protein-protein interaction studies demonstrate that some of the residues located at the HobA-DnaA(I-II) interface in the structure are necessary for complex formation. Introduction of selected mutations into H. pylori shows that the disruption of the interaction between HobA and DnaA is lethal for the bacteria. Remarkably, the DnaA binding site of HobA is conserved in DiaA from Escherichia coli, suggesting that the structure of the HobA/DnaA complex represents a model for DnaA regulation in other Gram-negative bacteria. Our data, together with those from other studies, indicate that HobA could play a crucial scaffolding role during the initiation of replication in H. pylori by organizing the first step of DnaA oligomerization and attachment to oriC.


Asunto(s)
Proteínas Bacterianas/química , Replicación del ADN , Proteínas de Unión al ADN/química , Helicobacter pylori/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , ADN Bacteriano , Proteínas de Unión al ADN/metabolismo , Helicobacter pylori/genética , Unión Proteica , Multimerización de Proteína , Origen de Réplica
3.
J Biol Chem ; 285(17): 13131-41, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20167596

RESUMEN

The DNA mismatch repair protein MutS acts as a molecular switch. It toggles between ADP and ATP states and is regulated by mismatched DNA. This is analogous to G-protein switches and the regulation of their "on" and "off" states by guanine exchange factors. Although GDP release in monomeric GTPases is accelerated by guanine exchange factor-induced removal of magnesium from the catalytic site, we found that release of ADP from MutS is not influenced by the metal ion in this manner. Rather, ADP release is induced by the binding of mismatched DNA at the opposite end of the protein, a long-range allosteric response resembling the mechanism of activation of heterotrimeric GTPases. Magnesium influences switching in MutS by inducing faster and tighter ATP binding, allowing rapid downstream responses. MutS mutants with decreased affinity for the metal ion are impaired in fast switching and in vivo mismatch repair. Thus, the G-proteins and MutS conceptually employ the same efficient use of the high energy cofactor: slow hydrolysis in the absence of a signal and fast conversion to the active state when required.


Asunto(s)
Adenosina Difosfato/química , Adenosina Trifosfato/química , ADN Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Magnesio/química , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Dominio Catalítico/fisiología , Reparación de la Incompatibilidad de ADN/fisiología , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Hidrólisis , Magnesio/metabolismo , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/genética , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo
4.
Nucleic Acids Res ; 31(16): 4814-21, 2003 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12907723

RESUMEN

We have refined a series of isomorphous crystal structures of the Escherichia coli DNA mismatch repair enzyme MutS in complex with G:T, A:A, C:A and G:G mismatches and also with a single unpaired thymidine. In all these structures, the DNA is kinked by approximately 60 degrees upon protein binding. Two residues widely conserved in the MutS family are involved in mismatch recognition. The phenylalanine, Phe 36, is seen stacking on one of the mismatched bases. The same base is also seen forming a hydrogen bond to the glutamate Glu 38. This hydrogen bond involves the N7 if the base stacking on Phe 36 is a purine and the N3 if it is a pyrimidine (thymine). Thus, MutS uses a common binding mode to recognize a wide range of mismatches.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Disparidad de Par Base , Proteínas de Unión al ADN/química , ADN/química , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Enlace de Hidrógeno , Modelos Moleculares , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN , Fenilalanina/química , Fenilalanina/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato
5.
Cell Host Microbe ; 7(4): 314-323, 2010 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-20399176

RESUMEN

The restriction factor BST-2/tetherin contains two membrane anchors employed to retain some enveloped viruses, including HIV-1 tethered to the plasma membrane in the absence of virus-encoded antagonists. The 2.77 A crystal structure of the BST-2/tetherin extracellular core presented here reveals a parallel 90 A long disulfide-linked coiled-coil domain, while the complete extracellular domain forms an extended 170 A long rod-like structure based on small-angle X-ray scattering data. Mutagenesis analyses indicate that both the coiled coil and the N-terminal region are required for retention of HIV-1, suggesting that the elongated structure can function as a molecular ruler to bridge long distances. The structure reveals substantial irregularities and instabilities throughout the coiled coil, which contribute to its low stability in the absence of disulfide bonds. We propose that the irregular coiled coil provides conformational flexibility, ensuring that BST-2/tetherin anchoring both in the plasma membrane and in the newly formed virus membrane is maintained during virus budding.


Asunto(s)
Antígenos CD/química , Membrana Celular/virología , VIH-1/fisiología , Interacciones Huésped-Patógeno , Glicoproteínas de Membrana/química , Liberación del Virus , Animales , Antígenos CD/metabolismo , Dicroismo Circular , Cristalografía por Rayos X , Proteínas Ligadas a GPI , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño
6.
Mol Microbiol ; 65(4): 995-1005, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17683397

RESUMEN

In prokaryotes, DNA replication is initiated by the binding of DnaA to the oriC region of the chromosome to load the primosome machinery and start a new replication round. Several proteins control these events in Escherichia coli to ensure that replication is precisely timed during the cell cycle. Here, we report the crystal structure of HobA (HP1230) at 1.7 A, a recently discovered protein that specifically interacts with DnaA protein from Helicobacter pylori (HpDnaA). We found that the closest structural homologue of HobA is a sugar isomerase (SIS) domain containing protein, the phosphoheptose isomerase from Pseudomonas aeruginosa. Remarkably, SIS proteins share strong sequence homology with DiaA from E. coli; yet, HobA and DiaA share no sequence homology. Thus, by solving the structure of HobA, we unexpectedly discovered that HobA is a H. pylori structural homologue of DiaA. By comparing the structure of HobA to a homology model of DiaA, we identified conserved, surface-accessible residues that could be involved in protein-protein interaction. Finally, we show that HobA specifically interacts with the N-terminal part of HpDnaA. The structural homology between DiaA and HobA strongly supports their involvement in the replication process and these proteins could define a new structural family of replication regulators in bacteria.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Portadoras/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/química , Helicobacter pylori/química , Homología Estructural de Proteína , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Calcio/metabolismo , Secuencia Conservada , Cristalografía por Rayos X , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína
7.
EMBO J ; 25(2): 409-19, 2006 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-16407973

RESUMEN

MutS plays a critical role in DNA mismatch repair in Escherichia coli by binding to mismatches and initiating repair in an ATP-dependent manner. Mutational analysis of a highly conserved glutamate, Glu38, has revealed its role in mismatch recognition by enabling MutS to discriminate between homoduplex and mismatched DNA. Crystal structures of MutS have shown that Glu38 forms a hydrogen bond to one of the mismatched bases. In this study, we have analyzed the crystal structures, DNA binding and the response to ATP binding of three Glu38 mutants. While confirming the role of the negative charge in initial discrimination, we show that in vivo mismatch repair can proceed even when discrimination is low. We demonstrate that the formation of a hydrogen bond by residue 38 to the mismatched base authorizes repair by inducing intramolecular signaling, which results in the inhibition of rapid hydrolysis of distally bound ATP. This allows formation of the stable MutS-ATP-DNA clamp, a key intermediate in triggering downstream repair events.


Asunto(s)
Disparidad de Par Base/genética , Reparación del ADN/fisiología , Ácido Glutámico/metabolismo , Modelos Moleculares , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/química , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Adenosina Trifosfato/metabolismo , Disparidad de Par Base/fisiología , Calorimetría , Cristalografía , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli , Ácido Glutámico/química , Enlace de Hidrógeno , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/genética , Mutagénesis Sitio-Dirigida , Oligonucleótidos , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA