Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Plant Cell ; 27(2): 375-90, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25663622

RESUMEN

Brassinosteroids (BRs) play important roles in plant development and the response to environmental cues. BIL1/BZR1 is a master transcription factor in BR signaling, but the mechanisms that lead to the finely tuned targeting of BIL1/BZR1 by BRs are unknown. Here, we identified BRZ-SENSITIVE-SHORT HYPOCOTYL1 (BSS1) as a negative regulator of BR signaling in a chemical-biological analysis involving brassinazole (Brz), a specific BR biosynthesis inhibitor. The bss1-1D mutant, which overexpresses BSS1, exhibited a Brz-hypersensitive phenotype in hypocotyl elongation. BSS1 encodes a BTB-POZ domain protein with ankyrin repeats, known as BLADE ON PETIOLE1 (BOP1), which is an important regulator of leaf morphogenesis. The bss1-1D mutant exhibited an increased accumulation of phosphorylated BIL1/BZR1 and a negative regulation of BR-responsive genes. The number of fluorescent BSS1/BOP1-GFP puncta increased in response to Brz treatment, and the puncta were diffused by BR treatment in the root and hypocotyl. We show that BSS1/BOP1 directly interacts with BIL1/BZR1 or BES1. The large protein complex formed between BSS1/BOP1 and BIL1/BZR1 was only detected in the cytosol. The nuclear BIL1/BZR1 increased in the BSS1/BOP1-deficient background and decreased in the BSS1/BOP1-overexpressing background. Our study suggests that the BSS1/BOP1 protein complex inhibits the transport of BIL1/BZR1 to the nucleus from the cytosol and negatively regulates BR signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Complejos Multiproteicos/metabolismo , Desarrollo de la Planta , Transducción de Señal , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brasinoesteroides/farmacología , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Oscuridad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Modelos Biológicos , Mutación/genética , Fenotipo , Desarrollo de la Planta/efectos de los fármacos , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Triazoles/farmacología
3.
Biosci Biotechnol Biochem ; 81(6): 1176-1184, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28162049

RESUMEN

Phytocassanes and momilactones are the major diterpenoid phytoalexins inductively produced in rice as bioactive substances. Regardless of extensive studies on the biosynthetic pathways of these phytoalexins, bioconversion of diterpene hydrocarbons is not shown in planta. To elucidate the entire biosynthetic pathways of these phytoalexins, uniformly 13C-labeled ent-cassadiene and syn-pimaradiene were enzymatically synthesized with structural verification by GC-MS and 13C-NMR. Application of the 13C-labeled substrates on rice leaves led to the detection of 13C-labeled metabolites using LC-MS/MS. Further application of this method in the moss Hypnum plumaeforme and the nearest out-group of Oryza species Leersia perrieri, respectively, resulted in successful bioconversion of these labeled substrates into phytoalexins in these plants. These results demonstrate that genuine biosynthetic pathways from these diterpene hydrocarbons to the end product phytoalexins occur in these plants and that enzymatically synthesized [U-13C20] diterpene substrates are a powerful tool for chasing endogenous metabolites without dilution with naturally abundant unlabeled compounds.


Asunto(s)
Briófitas/metabolismo , Diterpenos/metabolismo , Oryza/metabolismo , Hojas de la Planta/metabolismo , Sesquiterpenos/metabolismo , Biotransformación , Isótopos de Carbono , Cromatografía Liquida , Marcaje Isotópico , Estructura Molecular , Espectrometría de Masas en Tándem , Fitoalexinas
4.
Plant Cell Physiol ; 56(8): 1641-54, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26076971

RESUMEN

The phytohormone auxin plays a central role in many aspects of plant growth and development. IAA is the most studied natural auxin that possesses the property of polar transport in plants. Phenylacetic acid (PAA) has also been recognized as a natural auxin for >40 years, but its role in plant growth and development remains unclear. In this study, we show that IAA and PAA have overlapping regulatory roles but distinct transport characteristics as auxins in plants. PAA is widely distributed in vascular and non-vascular plants. Although the biological activities of PAA are lower than those of IAA, the endogenous levels of PAA are much higher than those of IAA in various plant tissues in Arabidopsis. PAA and IAA can regulate the same set of auxin-responsive genes through the TIR1/AFB pathway in Arabidopsis. IAA actively forms concentration gradients in maize coleoptiles in response to gravitropic stimulation, whereas PAA does not, indicating that PAA is not actively transported in a polar manner. The induction of the YUCCA (YUC) genes increases PAA metabolite levels in Arabidopsis, indicating that YUC flavin-containing monooxygenases may play a role in PAA biosynthesis. Our results provide new insights into the regulation of plant growth and development by different types of auxins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Oxigenasas/metabolismo , Fenilacetatos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Zea mays/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Transporte Biológico , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Oxigenasas/genética , Plantas Modificadas Genéticamente , Transducción de Señal , Zea mays/genética , Zea mays/crecimiento & desarrollo
5.
Biochem J ; 462(3): 539-46, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24983886

RESUMEN

ent-Kaurene is a key intermediate in the biosynthesis of the plant hormone gibberellin. In ent-kaurene biosynthesis in flowering plants, two diterpene cyclases (DTCs), ent-copalyl diphosphate (ent-CDP) synthase (ent-CPS) and ent-kaurene synthase (KS), catalyse the cyclization of geranylgeranyl diphosphate to ent-CDP and ent-CDP to ent-kaurene, respectively. In contrast, the moss Physcomitrella patens has a bifunctional ent-CPS/KS (PpCPS/KS) that catalyses both cyclization reactions. To gain more insight into the functional diversity of ent-kaurene biosynthetic enzymes in land plants, we focused on DTCs in the lycophyte Selaginella moellendorffii. The present paper describes the characterization of two S. moellendorffii DTCs (SmKS and SmDTC3) in vitro. SmDTC3 converted ent-CDP into ent-16α-hydroxykaurane and also used other CDP stereoisomers as substrate. Remarkably, SmKS, which produces ent-kaurene from ent-CDP, showed similar substrate selectivity: both SmKS and SmDTC3 synthesized sandaracopimaradiene from normal CDP. Therefore, the diversity of substrate recognition among KSs from other plants was investigated. PpCPS/KS could use normal CDP and syn-CDP as well as ent-CDP as substrate. In contrast, lettuce KS showed high specificity for ent-CDP, and rice KS recognized only ent-CDP. Our studies imply that ancient KS having low substrate specificity has evolved to be specific for ent-CDP to the biosynthesis of gibberellin.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Giberelinas/biosíntesis , Proteínas de Plantas/metabolismo , Transferasas Alquil y Aril/genética , Clonación Molecular , Embryophyta/enzimología , Evolución Molecular , Resonancia Magnética Nuclear Biomolecular , Organofosfatos/metabolismo , Proteínas de Plantas/genética , Selaginellaceae/enzimología , Selaginellaceae/genética , Estereoisomerismo , Especificidad por Sustrato
6.
Plant Cell Physiol ; 55(1): 218-28, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24285754

RESUMEN

IAA is a naturally occurring auxin that plays a crucial role in the regulation of plant growth and development. The endogenous concentration of IAA is spatiotemporally regulated by biosynthesis, transport and its inactivation in plants. Previous studies have shown that the metabolism of IAA to 2-oxindole-3-acetic acid (OxIAA) and OxIAA-glucoside (OxIAA-Glc) may play an important role in IAA homeostasis, but the genes involved in this metabolic pathway are still unknown. In this study, we show that UGT74D1 catalyzes the glucosylation of OxIAA in Arabidopsis. By screening yeasts transformed with Arabidopsis UDP-glycosyltransferase (UGT) genes, we found that OxIAA-Glc accumulates in the culture media of yeasts expressing UGT74D1 in the presence of OxIAA. Further, we showed that UGT74D1 expressed in Escherichia coli converts OxIAA to OxIAA-Glc. The endogenous concentration of OxIAA-Glc decreased by 85% while that of OxIAA increased 2.5-fold in ugt74d1-deficient mutants, indicating the major role of UGT74D1 in OxIAA metabolism. Moreover, the induction of UGT74D1 markedly increased the level of OxIAA-Glc and loss of root gravitropism. These results indicate that UGT74D1 catalyzes a committed step in the OxIAA-dependent IAA metabolic pathway in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Biocatálisis , Glucosiltransferasas/metabolismo , Ácidos Indolacéticos/metabolismo , Redes y Vías Metabólicas , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biocatálisis/efectos de los fármacos , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genética , Inducción Enzimática/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Glucosiltransferasas/genética , Glicosilación/efectos de los fármacos , Glicosiltransferasas/biosíntesis , Gravitropismo/efectos de los fármacos , Ácidos Indolacéticos/química , Ácidos Indolacéticos/farmacología , Cinética , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Oxindoles , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/fisiología
7.
Planta ; 240(1): 117-24, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24715198

RESUMEN

MAIN CONCLUSION: We report a novel physiological response to blue light in the moss Physcomitrella patens . Blue light regulates ent -kaurene biosynthesis and avoidance response to protonemal growth. Gibberellins (GAs) are a group of diterpene-type plant hormones biosynthesized from ent-kaurenoic acid via ent-kaurene. While the moss Physcomitrella patens has part of the GA biosynthetic pathway, from geranylgeranyl diphosphate to ent-kaurenoic acid, no GA is found in this species. Caulonemal differentiation in a P. patens mutant with a disrupted bifunctional ent-copalyl diphosphate synthase/ent-kaurene synthase (PpCPS/KS) gene is suppressed under red light, and is recovered by application of ent-kaurene and ent-kaurenoic acid. This indicates that derivatives of ent-kaurenoic acid, not GAs, might act as endogenous developmental regulators. Here, we found unique responses in the protonemal growth of P. patens under unilateral blue light, and these regulators were involved in the responses. When protonemata of the wild type were incubated under blue light, the chloronemal filaments grew in the opposite direction to the light source. Although this avoidance was not observed in the ent-kaurene deficient mutant, chloronemal growth toward a blue-light source in the mutant was suppressed by application of ent-kaurenoic acid, and the growth was rescued to that in the wild type. Expression analysis of the PpCPS/KS gene showed that the mRNA level under blue light was rapidly increased and was five times higher than under red light. These results suggest that regulators derived from ent-kaurenoic acid are strongly involved not only in the growth regulation of caulonemal differentiation under red light, but also in the light avoidance response of chloronemal growth under blue light. In particular, growth under blue light is regulated via the PpCPS/KS gene.


Asunto(s)
Transferasas Alquil y Aril/genética , Bryopsida/genética , Diterpenos de Tipo Kaurano/metabolismo , Diterpenos/metabolismo , Regulación Enzimológica de la Expresión Génica , Transducción de Señal , Transferasas Alquil y Aril/metabolismo , Vías Biosintéticas , Bryopsida/crecimiento & desarrollo , Bryopsida/fisiología , Bryopsida/efectos de la radiación , Diterpenos/química , Diterpenos de Tipo Kaurano/química , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Luz , Modelos Biológicos , Mutación , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación hacia Arriba
8.
Proc Natl Acad Sci U S A ; 108(45): 18512-7, 2011 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-22025724

RESUMEN

The phytohormone auxin plays critical roles in the regulation of plant growth and development. Indole-3-acetic acid (IAA) has been recognized as the major auxin for more than 70 y. Although several pathways have been proposed, how auxin is synthesized in plants is still unclear. Previous genetic and enzymatic studies demonstrated that both TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) and YUCCA (YUC) flavin monooxygenase-like proteins are required for biosynthesis of IAA during plant development, but these enzymes were placed in two independent pathways. In this article, we demonstrate that the TAA family produces indole-3-pyruvic acid (IPA) and the YUC family functions in the conversion of IPA to IAA in Arabidopsis (Arabidopsis thaliana) by a quantification method of IPA using liquid chromatography-electrospray ionization-tandem MS. We further show that YUC protein expressed in Escherichia coli directly converts IPA to IAA. Indole-3-acetaldehyde is probably not a precursor of IAA in the IPA pathway. Our results indicate that YUC proteins catalyze a rate-limiting step of the IPA pathway, which is the main IAA biosynthesis pathway in Arabidopsis.


Asunto(s)
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Biocatálisis , Espectrometría de Masas en Tándem
9.
J Pestic Sci ; 48(2): 47-53, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37361487

RESUMEN

To elucidate the cause of brown stem rot in the adzuki bean, we re-evaluated the phytotoxins produced in cultures of the causative agent, Phialophora gregata f. sp. adzukicola. The ethyl acetate-soluble acidic fraction of the culture, as well as the neutral fraction, inhibited the growth of alfalfa seedlings. In the neutral fraction, known phytotoxins gregatin A, B, and C or D and penicilliol A were present. Although the phytotoxins in the acidic fraction were unstable, liquid chromatography-mass spectrometry analysis of the partially purified material suggested that one phytotoxin present was the non-methylated gregatin desmethyl-gregatin A (gregatinic acid A).

10.
J Biol Chem ; 286(50): 42840-7, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22027823

RESUMEN

Diterpenes show diverse chemical structures and various physiological roles. The diversity of diterpene is primarily established by diterpene cyclases that catalyze a cyclization reaction to form the carbon skeleton of cyclic diterpene. Diterpene cyclases are divided into two types, monofunctional and bifunctional cyclases. Bifunctional diterpene cyclases (BDTCs) are involved in hormone and defense compound biosyntheses in bryophytes and gymnosperms, respectively. The BDTCs catalyze the successive two-step type-B (protonation-initiated cyclization) and type-A (ionization-initiated cyclization) reactions of geranylgeranyl diphosphate (GGDP). We found that the genome of a lycophyte, Selaginella moellendorffii, contains six BDTC genes with the majority being uncharacterized. The cDNA from S. moellendorffii encoding a BDTC-like enzyme, miltiradiene synthase (SmMDS), was cloned. The recombinant SmMDS converted GGDP to a diterpene hydrocarbon product with a molecular mass of 272 Da. Mutation in the type-B active motif of SmMDS abolished the cyclase activity, whereas (+)-copalyl diphosphate, the reaction intermediate from the conversion of GGDP to the hydrocarbon product, rescued the cyclase activity of the mutant to form a diterpene hydrocarbon. Another mutant lacking type-A activity accumulated copalyl diphosphate as the reaction intermediate. When the diterpene hydrocarbon was enzymatically synthesized from [U-(13)C(6)]mevalonate, all carbons were labeled with (13)C stable isotope (>99%). The fully (13)C-labeled product was subjected to (13)C-(13)C COSY NMR spectroscopic analyses. The direct carbon-carbon connectivities observed in the multidimensional NMR spectra demonstrated that the hydrocarbon product by SmMDS is miltiradiene, a putative biosynthetic precursor of tanshinone identified from the Chinese medicinal herb Salvia miltiorrhiza. Hence, SmMDS functions as a bifunctional miltiradiene synthase in S. moellendorffii. In this study, we demonstrate that one-dimensional and multidimensional (13)C NMR analyses of completely (13)C-labeled compound are powerful methods for biosynthetic studies.


Asunto(s)
Isótopos de Carbono/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Proteínas de Plantas/metabolismo , Selaginellaceae/metabolismo , Terpenos/química , Terpenos/metabolismo , Isótopos de Carbono/química , Proteínas de Plantas/genética , Fosfatos de Poliisoprenilo/metabolismo , Selaginellaceae/genética
11.
Biosci Biotechnol Biochem ; 76(8): 1558-60, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22878192

RESUMEN

Polyphosphate kinase (PPK), which can regenerate ATP from ADP, was utilized in the mevalonate-dependent enzymatic synthesis of amorphadiene. The activity of PPK, cloned from Escherichia coli, was determined by (31)P-NMR. The yield from the PPK-catalyzed synthesis was 25%, 2.5 times higher than that without PPK. The (31)P-NMR analysis of the final reaction mixture indicated no accumulation of intermediates.


Asunto(s)
Adenosina Trifosfato/química , Proteínas Bacterianas/química , Ácido Mevalónico/química , Fosfotransferasas (Aceptor del Grupo Fosfato)/química , Sesquiterpenos/síntesis química , Proteínas Bacterianas/genética , Biocatálisis , Clonación Molecular , Escherichia coli/genética , Espectroscopía de Resonancia Magnética , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Sesquiterpenos Policíclicos , Polifosfatos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Soluciones
12.
Plant J ; 61(3): 409-22, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19919572

RESUMEN

Brassinazole (Brz) is a specific inhibitor of the biosynthesis of brassinosteroids (BRs), which regulate plant organ and chloroplast development. We identified a recessive pale green Arabidopsis mutant, bpg2-1 (Brz-insensitive-pale green 2-1) that showed reduced sensitivity to chlorophyll accumulation promoted by Brz in the light. BPG2 encodes a chloroplast-localized protein with a zinc finger motif and four GTP-binding domains that are necessary for normal chloroplast biogenesis. BPG2-homologous genes are evolutionally conserved in plants, green algae and bacteria. Expression of BPG2 is induced by light and Brz. Chloroplasts of the bpg2-1 mutant have a decreased number of stacked grana thylakoids. In bpg2-1 and bpg2-2 mutants, there was no reduction in expression of rbcL and psbA, but there was abnormal accumulation of precursors of chloroplast 16S and 23S rRNA. Chloroplast protein accumulation induced by Brz was suppressed by the bpg2 mutation. These results indicate that BPG2 plays an important role in post-transcriptional and translational regulation in the chloroplast, and is a component of BR signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Unión al GTP/metabolismo , ARN Ribosómico 16S/metabolismo , ARN Ribosómico 23S/metabolismo , Esteroides/metabolismo , Secuencia de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cloroplastos/ultraestructura , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Regulación de la Expresión Génica de las Plantas , Microscopía Electrónica , Datos de Secuencia Molecular , Mutación , Filogenia , ARN del Cloroplasto/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transcripción Genética
13.
Biosci Biotechnol Biochem ; 75(9): 1722-6, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21897037

RESUMEN

The effect of the aerial mycelium-inducing compound, pamamycin-607, on antibiotic production by several Streptomyces spp. was examined. Exposure to 6.6 µM pamamycin-607 stimulated by 2.7 fold the puromycin production by Streptomyces alboniger NBRC 12738, in which pamamycin-607 had first been isolated, and restored aerial mycelium formation. Pamamycin-607 also stimulated the respective production of streptomycin by S. griseus NBRC 12875 and that of cinerubins A and B by S. tauricus JCM 4837 by approximately 1.5, 1.7 and 1.9 fold. The antibiotic produced by Streptomyces sp. 91-a was identified as virginiamycin M(1), and its synthesis was enhanced 2.6 fold by pamamycin-607. These results demonstrate that pamamycin-607 not only restored or stimulated aerial mycelium formation, but also stimulated secondary metabolite production.


Asunto(s)
Antibacterianos/biosíntesis , Macrólidos/farmacología , Micelio , Streptomyces , Estreptomicina/biosíntesis , Antibacterianos/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Micelio/efectos de los fármacos , Micelio/fisiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Streptomyces/efectos de los fármacos , Streptomyces/fisiología , Estreptomicina/aislamiento & purificación
14.
Biosci Biotechnol Biochem ; 75(1): 128-35, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21228464

RESUMEN

Natural terpenoids have elaborate structures and various bioactivities, making difficult their synthesis and labeling with isotopes. We report here the enzymatic total synthesis of plant hormone gibberellins (GAs) with recombinant biosynthetic enzymes from stable isotope-labeled acetate. Mevalonate (MVA) is a key intermediate for the terpenoid biosynthetic pathway. ¹³C-MVA was synthesized from ¹³C-acetate via acetyl-CoA, using four enzymes or fermentation with a MVA-secreted yeast. The diterpene hydrocarbon, ent-kaurene, was synthesized from ¹³C-acetate and ¹³C-MVA with ten and six recombinant enzymes in one test tube, respectively. Four recombinant enzymes, P450 monooxygenases and soluble dioxygenases involved in the GA4 biosynthesis from ent-kaurene via GA12 were prepared in yeast and Escherichia coli. All intermediates and the final product GA4 were uniformly labeled with ¹³C without dilution by natural abundance when [U-¹³C2] acetate was used. The ¹³C-NMR and MS data for [U-¹³C20] ent-kaurene confirmed ¹³C-¹³C coupling, and no dilution with the ¹²C atom was observed.


Asunto(s)
Ácido Acético/metabolismo , Enzimas/metabolismo , Giberelinas/biosíntesis , Isótopos de Carbono , Diterpenos de Tipo Kaurano/biosíntesis , Diterpenos de Tipo Kaurano/química , Enzimas/biosíntesis , Enzimas/genética , Hongos/enzimología , Plantas/enzimología , Fosfatos de Poliisoprenilo/biosíntesis , Especificidad por Sustrato
15.
Biosci Biotechnol Biochem ; 75(2): 331-6, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21350301

RESUMEN

CYP78 is a plant-specific family of cytochrome P450 monooxygenases, some members of which regulate the plastochron length and organ size in angiosperms. The CYP78 family appears to be highly conserved in land plants, but there have been no reports on the role of CYP78s in bryophytes. The moss, Physcomitrella patens, possesses two CYP78As, CYP78A27 and CYP78A28. We produced single and double mutants and overexpression lines for CYP78A27 and CYP78A28 by gene targeting to investigate the function of CYP78As in P. patens. Neither the cyp78a27 nor cyp78a28 single mutant showed any obvious phenotype, while the double mutant exhibited severely retarded protonemal growth and gametophore development. The endogenous levels of some plant hormones were also altered in the double mutant. Transgenic lines that overexpressed CYP78A27 or CYP78A28 showed delayed and reduced bud formation. Our results suggest that CYP78As participate in the synthesis of a critical growth regulator in P. patens.


Asunto(s)
Bryopsida/citología , Bryopsida/crecimiento & desarrollo , Sistema Enzimático del Citocromo P-450/metabolismo , Bryopsida/enzimología , Sistema Enzimático del Citocromo P-450/genética , Mutación , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo
16.
J Agric Food Chem ; 67(7): 1807-1813, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30734556

RESUMEN

The chemotactic activity of the pathogen of bacterial wilt disease, Ralstonia solanacearum, was tested against 30 aromatic acids and plant hormones infused on filter discs in bioassays on agar plates. 4-Hydroxycinnamic acid ( p-coumaric acid) and 4-hydroxybenzoic acid were strong chemoattractants, 3,4-dihydroxybenzoic acid (protocatechuic acid) and jasmonic acid were weak attractants, and 2-hydroxybenzoic acid (salicylic acid) showed both attracting and repelling activity depending on dose. Examination of the dose dependency revealed that the ED50 for 4-hydroxycinnamic acid and 4-hydroxybenzoic acid was 0.08 and 0.39 µmol/disc, respectively. 2-Hydroxybenzoic acid showed chemoattractant activity at 0.33 µmol/disc but chemorepellent activity at 3.3 µmol/disc, and bacterial random motility was activated at 1.0 µmol/disc and bacterial activity was suppressed at 33 µmol/disc. Although water-soluble attractants including amino acids and organic acids have been previously investigated, this is the first report of hydroxylated aromatic acids (HAAs) as chemoattractants of R. solanacearum.


Asunto(s)
Factores Quimiotácticos/farmacología , Quimiotaxis/efectos de los fármacos , Ralstonia solanacearum/efectos de los fármacos , Ralstonia solanacearum/fisiología , Solanum lycopersicum/metabolismo , Factores Quimiotácticos/aislamiento & purificación , Ácidos Cumáricos/farmacología , Relación Dosis-Respuesta a Droga , Flavonoides/farmacología , Parabenos/farmacología , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/química , Propionatos/farmacología , Ácido Salicílico/farmacología
17.
Biosci Biotechnol Biochem ; 72(8): 2110-7, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18685225

RESUMEN

Brassinolide (BL), a plant 7-oxalactone-type steroid hormone, is one of the active brassinosteroids (BRs) that regulates plant growth and development. BL is biosynthesized from castasterone by the cytochrome P450 monooxygenase, CYP85A2. We showed that a Pichia pastoris transformant that synchronously expresses Arabidopsis P450 reductase gene ATR1 and P450 gene CYP85A2 converts teasterone and typhasterol to 7-oxateasterone and 7-oxatyphasterol, respectively. Thus, CYP85A2 catalyzes the lactonization reactions of not only castasterone but also teasterone and typhasterol. The two 2-deoxy-7-oxalactone-type BRs were identified in Arabidopsis plants. Although the reversible conversion between 7-oxateasterone and 7-oxatyphasterol was observed in vivo, no conversion of 7-oxatyphasterol to BL was observed. The biological activity of 7-oxatyphasterol toward Arabidopsis hypocotyl elongation was nearly the same as that of castasterone. These results suggest that a new BR biosynthetic pathway, a BR lactonization pathway, functions in Arabidopsis and plays an important role in regulating the concentration of active BRs, even though the metabolism of 7-oxatyphasterol to BL is still unknown.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Sistema Enzimático del Citocromo P-450/metabolismo , Lactonas/química , Esteroides/biosíntesis , Esteroides/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Catálisis , Sistema Enzimático del Citocromo P-450/genética , Cromatografía de Gases y Espectrometría de Masas , Estructura Molecular , Pichia/genética , Pichia/metabolismo , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transgenes/genética
18.
J Antibiot (Tokyo) ; 61(2): 98-102, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18408331

RESUMEN

Two pamamycin homologues with different side chain lengths were isolated from Streptomyces sp. HKI-0118. Aerial mycelium-inducing activity decreased by ca. 1/10 per methylene unit in the side chain.


Asunto(s)
Micelio/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Macrólidos , Estructura Molecular , Micelio/metabolismo , Compuestos Orgánicos/química , Compuestos Orgánicos/aislamiento & purificación , Compuestos Orgánicos/farmacología , Streptomyces , Relación Estructura-Actividad
19.
J Agric Food Chem ; 55(26): 10622-7, 2007 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-18052243

RESUMEN

The structure of a germination inhibitor, hypnosin, isolated from phytopathogenic Streptomyces sp. causing root tumor of melon was determined to be 3-acetylaminopyrazine-2-carboxylic acid (1) by mass spectrometry, computational chemical prediction of UV spectrum, and synthesis of candidates. The structure-activity relationship of hypnosin and anthranilic acid was examined, and it was concluded that pyrazinecarboxylic acid or pyridine-2-carboxylic acid was the fundamental structure with activity, that methylation of the carboxyl group or decarboxylation destroyed activity, and that the presence of an amino group was inhibitory to the activity, whereas acetylation or deletion of an amino group enhanced activity. Hypnosin inhibited spore germination of some Streptomyces spp. in addition to the species with which it was isolated.


Asunto(s)
Cucumis/microbiología , Enfermedades de las Plantas/microbiología , Pirazinas/química , Esporas Bacterianas/efectos de los fármacos , Esporas Bacterianas/crecimiento & desarrollo , Streptomyces/crecimiento & desarrollo , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacología , Calor , Pirazinas/farmacología , Piridinas/química , Streptomyces/química , Streptomyces/efectos de los fármacos , Relación Estructura-Actividad
20.
J Pestic Sci ; 41(3): 96-101, 2016 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30363151

RESUMEN

Actinomycetes produce a number of useful secondary metabolites with antibiotic, insecticidal and herbicidal activities. Actinomycetes are prokaryotes, but the morphology of their mycelia is similar to that of fungi. Our research into the regulators of aerial mycelium-differentiation and spore germination and the surrounding research is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA