Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32198172

RESUMEN

Azotobacter vinelandii is an obligate aerobic diazotroph with a verified transient ability to reduce carbon monoxide to ethylene by its vanadium nitrogenase. In this study, we implemented an industrially relevant continuous two-stage stirred-tank system for in vivo biotransformation of a controlled supply of air enriched with 5% carbon monoxide to 302 µg ethylene g-1 glucose consumed. To attain this value, the process required overcoming critical oxygen limitations during cell proliferation while simultaneously avoiding the A. vinelandii respiratory protection mechanism that negatively impacts in vivo nitrogenase activity. Additionally, process conditions allowed the demonstration of carbon monoxide's solubility as a reaction-limiting factor and a competitor with dinitrogen for the vanadium nitrogenase active site, implying that excess intracellular carbon monoxide could lead to a cessation of cell proliferation and ethylene formation as shown genetically using a new strain of A. vinelandii deficient in carbon monoxide dehydrogenase.IMPORTANCE Ethylene is an essential commodity feedstock used for the generation of a variety of consumer products, but its generation demands energy-intensive processes and is dependent on nonrenewable substrates. This work describes a continuous biological method for investigating the nitrogenase-mediated carbon monoxide reductive coupling involved in ethylene production using whole cells of Azotobacter vinelandii If eventually adopted by industry, this technology has the potential to significantly reduce the total energy input required and the ethylene recovery costs, as well as decreasing greenhouse gas emissions associated with current production strategies.


Asunto(s)
Azotobacter vinelandii/metabolismo , Monóxido de Carbono/metabolismo , Etilenos/metabolismo , Biocombustibles , Reactores Biológicos
2.
Plant Biotechnol J ; 16(1): 39-49, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28436149

RESUMEN

Sustainable utilization of lignocellulosic perennial grass feedstocks will be enabled by high biomass production and optimized cell wall chemistry for efficient conversion into biofuels. MicroRNAs are regulatory elements that modulate the expression of genes involved in various biological functions in plants, including growth and development. In greenhouse studies, overexpressing a microRNA (miR156) gene in switchgrass had dramatic effects on plant architecture and flowering, which appeared to be driven by transgene expression levels. High expressing lines were extremely dwarfed, whereas low and moderate-expressing lines had higher biomass yields, improved sugar release and delayed flowering. Four lines with moderate or low miR156 overexpression from the prior greenhouse study were selected for a field experiment to assess the relationship between miR156 expression and biomass production over three years. We also analysed important bioenergy feedstock traits such as flowering, disease resistance, cell wall chemistry and biofuel production. Phenotypes of the transgenic lines were inconsistent between the greenhouse and the field as well as among different field growing seasons. One low expressing transgenic line consistently produced more biomass (25%-56%) than the control across all three seasons, which translated to the production of 30% more biofuel per plant during the final season. The other three transgenic lines produced less biomass than the control by the final season, and the two lines with moderate expression levels also exhibited altered disease susceptibilities. Results of this study emphasize the importance of performing multiyear field studies for plants with altered regulatory transgenes that target plant growth and development.


Asunto(s)
Panicum/genética , Panicum/microbiología , Plantas Modificadas Genéticamente/genética , Biomasa , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , MicroARNs/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/microbiología
3.
Appl Environ Microbiol ; 84(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29915110

RESUMEN

Azotobacter vinelandii selectively utilizes three types of nitrogenase (molybdenum, vanadium, and iron only) to fix N2, with their expression regulated by the presence or absence of different metal cofactors in its environment. Each alternative nitrogenase isoenzyme is predicted to have different electron flux requirements based on in vitro measurements, with the molybdenum nitrogenase requiring the lowest flux and the iron-only nitrogenase requiring the highest. Here, prior characterized strains, derepressed in nitrogenase synthesis and also deficient in uptake hydrogenase, were further modified to generate new mutants lacking the ability to produce poly-ß-hydroxybutyrate (PHB). PHB is a storage polymer generated under oxygen-limiting conditions and can represent up to 70% of the cells' dry weight. The absence of such granules facilitated the study of relationships between catalytic biomass and product molar yields across different adaptive respiration conditions. The released hydrogen gas observed during growth, due to the inability of the mutants to recapture hydrogen, allowed for direct monitoring of in vivo nitrogenase activity for each isoenzyme. The data presented here show that increasing oxygen exposure limits equally the in vivo activities of all nitrogenase isoenzymes, while under comparative conditions, the Mo nitrogenase enzyme evolves more hydrogen per unit of biomass than the alternative isoenzymes.IMPORTANCEA. vinelandii has been a focus of intense research for over 100 years. It has been investigated for a variety of functions, including agricultural fertilization and hydrogen production. All of these endeavors are centered around A. vinelandii's ability to fix nitrogen aerobically using three nitrogenase isoenzymes. The majority of research up to this point has targeted in vitro measurements of the molybdenum nitrogenase, and robust data contrasting how oxygen impacts the in vivo activity of each nitrogenase isoenzyme are lacking. This article aims to provide in vivo nitrogenase activity data using a real-time evaluation of hydrogen gas released by derepressed nitrogenase mutants lacking an uptake hydrogenase and PHB accumulation.


Asunto(s)
Azotobacter vinelandii/enzimología , Hidrógeno/metabolismo , Nitrogenasa/metabolismo , Oxígeno/metabolismo , Azotobacter vinelandii/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Hidroxibutiratos/metabolismo , Hierro/metabolismo , Molibdeno/metabolismo , Nitrógeno/metabolismo , Fijación del Nitrógeno , Nitrogenasa/genética , Oxidación-Reducción , Poliésteres/metabolismo , Vanadio/metabolismo
4.
Plant Biotechnol J ; 15(6): 688-697, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27862852

RESUMEN

Transgenic Panicum virgatum L. silencing (KD) or overexpressing (OE) specific genes or a small RNA (GAUT4-KD, miRNA156-OE, MYB4-OE, COMT-KD and FPGS-KD) was grown in the field and aerial tissue analysed for biofuel production traits. Clones representing independent transgenic lines were established and senesced tissue was sampled after year 1 and 2 growth cycles. Biomass was analysed for wall sugars, recalcitrance to enzymatic digestibility and biofuel production using separate hydrolysis and fermentation. No correlation was found between plant carbohydrate content and biofuel production pointing to overriding structural and compositional elements that influence recalcitrance. Biomass yields were greater for all lines in the second year as plants establish in the field and standard amounts of biomass analysed from each line had more glucan, xylan and less ethanol (g/g basis) in the second- versus the first-year samples, pointing to a broad increase in tissue recalcitrance after regrowth from the perennial root. However, biomass from second-year growth of transgenics targeted for wall modification, GAUT4-KD, MYB4-OE, COMT-KD and FPGS-KD, had increased carbohydrate and ethanol yields (up to 12% and 21%, respectively) compared with control samples. The parental plant lines were found to have a significant impact on recalcitrance which can be exploited in future strategies. This summarizes progress towards generating next-generation bio-feedstocks with improved properties for microbial and enzymatic deconstruction, while providing a comprehensive quantitative analysis for the bioconversion of multiple plant lines in five transgenic strategies.


Asunto(s)
Panicum/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Biocombustibles , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Panicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética
5.
Front Plant Sci ; 11: 843, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32636863

RESUMEN

Switchgrass (Panicum virgatum L.) is a lignocellulosic perennial grass with great potential in bioenergy field. Lignocellulosic bioenergy crops are mostly resistant to cell wall deconstruction, and therefore yield suboptimal levels of biofuel. The one-carbon pathway (also known as C1 metabolism) is critical for polymer methylation, including that of lignin and hemicelluloses in cell walls. Folylpolyglutamate synthetase (FPGS) catalyzes a biochemical reaction that leads to the formation of folylpolyglutamate, an important cofactor for many enzymes in the C1 pathway. In this study, the putatively novel switchgrass PvFPGS1 gene was identified and its functional role in cell wall composition and biofuel production was examined by RNAi knockdown analysis. The PvFPGS1-downregulated plants were analyzed in the field over three growing seasons. Transgenic plants with the highest reduction in PvFPGS1 expression grew slower and produced lower end-of-season biomass. Transgenic plants with low-to-moderate reduction in PvFPGS1 transcript levels produced equivalent biomass as controls. There were no significant differences observed for lignin content and syringyl/guaiacyl lignin monomer ratio in the low-to-moderately reduced PvFPGS1 transgenic lines compared with the controls. Similarly, sugar release efficiency was also not significantly different in these transgenic lines compared with the control lines. However, transgenic plants produced up to 18% more ethanol while maintaining congruent growth and biomass as non-transgenic controls. Severity of rust disease among transgenic and control lines were not different during the time course of the field experiments. Altogether, the unchanged lignin content and composition in the low-to-moderate PvFPGS1-downregulated lines may suggest that partial downregulation of PvFPGS1 expression did not impact lignin biosynthesis in switchgrass. In conclusion, the manipulation of PvFPGS1 expression in bioenergy crops may be useful to increase biofuel potential with no growth penalty or increased susceptibility to rust in feedstock.

6.
Nat Biotechnol ; 36(3): 249-257, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29431741

RESUMEN

Cell walls in crops and trees have been engineered for production of biofuels and commodity chemicals, but engineered varieties often fail multi-year field trials and are not commercialized. We engineered reduced expression of a pectin biosynthesis gene (Galacturonosyltransferase 4, GAUT4) in switchgrass and poplar, and find that this improves biomass yields and sugar release from biomass processing. Both traits were maintained in a 3-year field trial of GAUT4-knockdown switchgrass, with up to sevenfold increased saccharification and ethanol production and sixfold increased biomass yield compared with control plants. We show that GAUT4 is an α-1,4-galacturonosyltransferase that synthesizes homogalacturonan (HG). Downregulation of GAUT4 reduces HG and rhamnogalacturonan II (RGII), reduces wall calcium and boron, and increases extractability of cell wall sugars. Decreased recalcitrance in biomass processing and increased growth are likely due to reduced HG and RGII cross-linking in the cell wall.


Asunto(s)
Biocombustibles , Pared Celular/genética , Glucuronosiltransferasa/genética , Pectinas/biosíntesis , Biomasa , Boro/metabolismo , Calcio/metabolismo , Pared Celular/enzimología , Pared Celular/metabolismo , Productos Agrícolas , Glucuronosiltransferasa/química , Panicum/enzimología , Panicum/genética , Pectinas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Populus/enzimología , Populus/genética , Azúcares/metabolismo
7.
Sci Rep ; 7: 43583, 2017 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-28240279

RESUMEN

Clostridium (Ruminiclostridium) thermocellum is a model organism for its ability to deconstruct plant biomass and convert the cellulose into ethanol. The bacterium forms biofilms adherent to lignocellulosic feedstocks in a continuous cell-monolayer in order to efficiently break down and uptake cellulose hydrolysates. We developed a novel bioreactor design to generate separate sessile and planktonic cell populations for omics studies. Sessile cells had significantly greater expression of genes involved in catabolism of carbohydrates by glycolysis and pyruvate fermentation, ATP generation by proton gradient, the anabolism of proteins and lipids and cellular functions critical for cell division consistent with substrate replete conditions. Planktonic cells had notably higher gene expression for flagellar motility and chemotaxis, cellulosomal cellulases and anchoring scaffoldins, and a range of stress induced homeostasis mechanisms such as oxidative stress protection by antioxidants and flavoprotein co-factors, methionine repair, Fe-S cluster assembly and repair in redox proteins, cell growth control through tRNA thiolation, recovery of damaged DNA by nucleotide excision repair and removal of terminal proteins by proteases. This study demonstrates that microbial attachment to cellulose substrate produces widespread gene expression changes for critical functions of this organism and provides physiological insights for two cells populations relevant for engineering of industrially-ready phenotypes.


Asunto(s)
Biopelículas , Clostridium thermocellum/crecimiento & desarrollo , Clostridium thermocellum/genética , Regulación de la Expresión Génica , Plancton/crecimiento & desarrollo , Plancton/genética , Biomarcadores , Biomasa , Vías Biosintéticas , Metabolismo de los Hidratos de Carbono , Clostridium thermocellum/metabolismo , Metabolismo Energético , Fermentación , Regulación Bacteriana de la Expresión Génica , Metabolismo de los Lípidos , Estrés Oxidativo , Plancton/metabolismo , Estrés Fisiológico
8.
Biotechnol Biofuels ; 9: 31, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26855670

RESUMEN

BACKGROUND: Higher ratios of syringyl-to-guaiacyl (S/G) lignin components of Populus were shown to improve sugar release by enzymatic hydrolysis using commercial blends. Cellulolytic microbes are often robust biomass hydrolyzers and may offer cost advantages; however, it is unknown whether their activity can also be significantly influenced by the ratio of different monolignol types in Populus biomass. Hydrolysis and fermentation of autoclaved, but otherwise not pretreated Populus trichocarpa by Clostridium thermocellum ATCC 27405 was compared using feedstocks that had similar carbohydrate and total lignin contents but differed in S/G ratios. RESULTS: Populus with an S/G ratio of 2.1 was converted more rapidly and to a greater extent compared to similar biomass that had a ratio of 1.2. For either microbes or commercial enzymes, an approximate 50 % relative difference in total solids solubilization was measured for both biomasses, which suggests that the differences and limitations in the microbial breakdown of lignocellulose may be largely from the enzymatic hydrolytic process. Surprisingly, the reduction in glucan content per gram solid in the residual microbially processed biomass was similar (17-18 %) irrespective of S/G ratio, pointing to a similar mechanism of solubilization that proceeded at different rates. Fermentation metabolome testing did not reveal the release of known biomass-derived alcohol and aldehyde inhibitors that could explain observed differences in microbial hydrolytic activity. Biomass-derived p-hydroxybenzoic acid was up to nine-fold higher in low S/G ratio biomass fermentations, but was not found to be inhibitory in subsequent test fermentations. Cellulose crystallinity and degree of polymerization did not vary between Populus lines and had minor changes after fermentation. However, lignin molecular weights and cellulose accessibility determined by Simons' staining were positively correlated to the S/G content. CONCLUSIONS: Higher S/G ratios in Populus biomass lead to longer and more linear lignin chains and greater access to surface cellulosic content by microbe-bound enzymatic complexes. Substrate access limitation is suggested as a primary bottleneck in solubilization of minimally processed Populus, which has important implications for microbial deconstruction of lignocellulose biomass. Our findings will allow others to examine different Populus lines and to test if similar observations are possible for other plant species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA