Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Bioinformatics ; 23(Suppl 12): 484, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36384425

RESUMEN

BACKGROUND: Mass screening programs for cervical cancer prevention in the Nordic countries have strongly reduced cancer incidence and mortality at the population level. An alternative to the current mass screening is a more personalised screening strategy adapting the recommendations to each individual. However, this necessitates reliable risk prediction models accounting for disease dynamics and individual data. Herein we propose a novel matrix factorisation framework to classify females by the time-varying risk of being diagnosed with cervical cancer. We cast the problem as a time-series prediction model where the data from females in the Norwegian screening population are represented as sparse vectors in time and then combined into a single matrix. Using novel temporal regularisation and discrepancy terms for the cervical cancer screening context, we reconstruct complete screening profiles from this scarce matrix and use these to predict the next exam results indicating the risk of cervical cancer. The algorithm is validated on both synthetic and registry screening data by measuring the probability of agreement (PoA) between Kaplan-Meier estimates. RESULTS: In numerical experiments on synthetic data, we demonstrate that the novel regularisation and discrepancy term can improve the data reconstruction ability as well as prediction performance over varying data scarcity. Using a hold-out set of screening data, we compare several numerical models and find that the proposed framework attains the strongest PoA. We observe strong correlations between the empirical survival curves from our method and the hold-out data, and evaluate the ability of our framework to predict the females' next results for up to five years ahead in time using only their current screening histories as input. CONCLUSIONS: We have proposed a matrix factorization model for predicting future screening results and evaluated its performance in a female cohort to demonstrate the potential for developing prediction models for more personalized cervical cancer screening.


Asunto(s)
Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/epidemiología , Detección Precoz del Cáncer , Tamizaje Masivo/métodos , Incidencia , Estudios de Cohortes
2.
Sci Rep ; 12(1): 12083, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840652

RESUMEN

Mass-screening programs for cervical cancer prevention in the Nordic countries have been effective in reducing cancer incidence and mortality at the population level. Women who have been regularly diagnosed with normal screening exams represent a sub-population with a low risk of disease and distinctive screening strategies which avoid over-screening while identifying those with high-grade lesions are needed to improve the existing one-size-fits-all approach. Machine learning methods for more personalized cervical cancer risk estimation may be of great utility to screening programs shifting to more targeted screening. However, deriving personalized risk prediction models is challenging as effective screening has made cervical cancer rare and the exam results are strongly skewed towards normal. Moreover, changes in female lifestyle and screening habits over time can cause a non-stationary data distribution. In this paper, we treat cervical cancer risk prediction as a longitudinal forecasting problem. We define risk estimators by extending existing frameworks developed on cervical cancer screening data to incremental learning for longitudinal risk predictions and compare these estimators to machine learning methods popular in biomedical applications. As input to the prediction models, we utilize all the available data from the individual screening histories.Using data from the Cancer Registry of Norway, we find in numerical experiments that the models are strongly biased towards normal results due to imbalanced data. To identify females at risk of cancer development, we adapt an imbalanced classification strategy to non-stationary data. Using this strategy, we estimate the absolute risk from longitudinal model predictions and a hold-out set of screening data. Comparing absolute risk curves demonstrate that prediction models can closely reflect the absolute risk observed in the hold-out set. Such models have great potential for improving cervical cancer risk stratification for more personalized screening recommendations.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Cuello del Útero/patología , Detección Precoz del Cáncer , Femenino , Humanos , Tamizaje Masivo/métodos , Infecciones por Papillomavirus/patología , Medición de Riesgo , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/epidemiología , Neoplasias del Cuello Uterino/patología
3.
Nat Commun ; 12(1): 5918, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635661

RESUMEN

Fuelled by epidemiological studies of SARS-CoV-2, contact tracing by mobile phones has been put to use in many countries. Over a year into the pandemic, we lack conclusive evidence on its effectiveness. To address this gap, we used a unique real world contact data set, collected during the rollout of the first Norwegian contact tracing app in the Spring of 2020. Our dataset involves millions of contacts between 12.5% of the adult population, which enabled us to measure the real-world app performance. The technological tracing efficacy was measured at 80%, and we estimated that at least 11.0% of the discovered close contacts could not have been identified by manual contact tracing. Our results also indicated that digital contact tracing can flag individuals with excessive contacts, which can help contain superspreading related outbreaks. The overall effectiveness of digital tracing depends strongly on app uptake, but significant impact can be achieved for moderate uptake numbers. Used as a supplement to manual tracing and other measures, digital tracing can be instrumental in controlling the pandemic. Our findings can thus help informing public health policies in the coming months.


Asunto(s)
COVID-19/epidemiología , COVID-19/prevención & control , Trazado de Contacto , Pandemias/prevención & control , Humanos , Aplicaciones Móviles , Noruega/epidemiología , Probabilidad , SARS-CoV-2/fisiología
4.
Front Physiol ; 12: 745349, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34819872

RESUMEN

Background: Remodeling due to myocardial infarction (MI) significantly increases patient arrhythmic risk. Simulations using patient-specific models have shown promise in predicting personalized risk for arrhythmia. However, these are computationally- and time- intensive, hindering translation to clinical practice. Classical machine learning (ML) algorithms (such as K-nearest neighbors, Gaussian support vector machines, and decision trees) as well as neural network techniques, shown to increase prediction accuracy, can be used to predict occurrence of arrhythmia as predicted by simulations based solely on infarct and ventricular geometry. We present an initial combined image-based patient-specific in silico and machine learning methodology to assess risk for dangerous arrhythmia in post-infarct patients. Furthermore, we aim to demonstrate that simulation-supported data augmentation improves prediction models, combining patient data, computational simulation, and advanced statistical modeling, improving overall accuracy for arrhythmia risk assessment. Methods: MRI-based computational models were constructed from 30 patients 5 days post-MI (the "baseline" population). In order to assess the utility biophysical model-supported data augmentation for improving arrhythmia prediction, we augmented the virtual baseline patient population. Each patient ventricular and ischemic geometry in the baseline population was used to create a subfamily of geometric models, resulting in an expanded set of patient models (the "augmented" population). Arrhythmia induction was attempted via programmed stimulation at 17 sites for each virtual patient corresponding to AHA LV segments and simulation outcome, "arrhythmia," or "no-arrhythmia," were used as ground truth for subsequent statistical prediction (machine learning, ML) models. For each patient geometric model, we measured and used choice data features: the myocardial volume and ischemic volume, as well as the segment-specific myocardial volume and ischemia percentage, as input to ML algorithms. For classical ML techniques (ML), we trained k-nearest neighbors, support vector machine, logistic regression, xgboost, and decision tree models to predict the simulation outcome from these geometric features alone. To explore neural network ML techniques, we trained both a three - and a four-hidden layer multilayer perceptron feed forward neural networks (NN), again predicting simulation outcomes from these geometric features alone. ML and NN models were trained on 70% of randomly selected segments and the remaining 30% was used for validation for both baseline and augmented populations. Results: Stimulation in the baseline population (30 patient models) resulted in reentry in 21.8% of sites tested; in the augmented population (129 total patient models) reentry occurred in 13.0% of sites tested. ML and NN models ranged in mean accuracy from 0.83 to 0.86 for the baseline population, improving to 0.88 to 0.89 in all cases. Conclusion: Machine learning techniques, combined with patient-specific, image-based computational simulations, can provide key clinical insights with high accuracy rapidly and efficiently. In the case of sparse or missing patient data, simulation-supported data augmentation can be employed to further improve predictive results for patient benefit. This work paves the way for using data-driven simulations for prediction of dangerous arrhythmia in MI patients.

5.
EURASIP J Adv Signal Process ; 2018(1): 12, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29503663

RESUMEN

This paper extends the recently proposed and theoretically justified iterative thresholding and K residual means (ITKrM) algorithm to learning dictionaries from incomplete/masked training data (ITKrMM). It further adapts the algorithm to the presence of a low-rank component in the data and provides a strategy for recovering this low-rank component again from incomplete data. Several synthetic experiments show the advantages of incorporating information about the corruption into the algorithm. Further experiments on image data confirm the importance of considering a low-rank component in the data and show that the algorithm compares favourably to its closest dictionary learning counterparts, wKSVD and BPFA, either in terms of computational complexity or in terms of consistency between the dictionaries learned from corrupted and uncorrupted data. To further confirm the appropriateness of the learned dictionaries, we explore an application to sparsity-based image inpainting. There the ITKrMM dictionaries show a similar performance to other learned dictionaries like wKSVD and BPFA and a superior performance to other algorithms based on pre-defined/analytic dictionaries.

6.
Diabetes Technol Ther ; 13(8): 787-96, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21612393

RESUMEN

BACKGROUND: Prediction of the future blood glucose (BG) evolution from continuous glucose monitoring (CGM) data is a promising direction in diabetes therapy management, and several glucose predictors have recently been proposed. This raises the problem of their assessment. There were attempts to use for such assessment the continuous glucose-error grid analysis (CG-EGA), originally developed for CGM devices. However, in the CG-EGA the BG rate of change is estimated from past BG readings, whereas predictors provide BG estimation ahead of time. Therefore, the original CG-EGA should be modified to assess predictors. Here we propose a new version of the CG-EGA, the Prediction-Error Grid Analysis (PRED-EGA). METHODS: The analysis is based both on simulated data and on data from clinical trials, performed in the European FP7-project "DIAdvisor." Simulated data are used to test the ability of the analyzed CG-EGA modifications to capture erroneous predictions in controlled situation. Real data are used to show the impact of the different CG-EGA versions in the evaluation of a predictor. RESULTS: Using the data of 10 virtual and 10 real subjects and analyzing two different predictors, we demonstrate that the straightforward application of the CG-EGA does not adequately classify the prediction performance. For example, we observed that up to 70% of 20 min ahead predictions in the hyperglycemia region that are classified by this application as erroneous are, in fact, accurate. Moreover, for predictions during hypoglycemia the assessments produced by the straightforward application of the CG-EGA are not only too pessimistic (in up to 60% of cases), but this version is not able to detect real erroneous predictions. In contrast, the proposed modification of the CG-EGA, where the rate of change is estimated on the predicted BG profile, is an adequate metric for the assessment of predictions. CONCLUSIONS: We propose a new CG-EGA, the PRED-EGA, for the assessment of glucose predictors. The presented analysis shows that, compared with the straightforward application of the CG-EGA, the PRED-EGA gives a significant reduction of the misclassification cases. A reduction by a factor of at least 4 was observed in the study. Moreover, the PRED-EGA is much more robust against uncertainty in the input and references.


Asunto(s)
Automonitorización de la Glucosa Sanguínea/métodos , Glucemia/análisis , Diabetes Mellitus Tipo 1/sangre , Adolescente , Anciano , Glucemia/metabolismo , Automonitorización de la Glucosa Sanguínea/instrumentación , Predicción , Humanos , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA