Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Tipo de estudio
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(2): e2312880120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38175867

RESUMEN

We unveil the multifractal behavior of Ising spin glasses in their low-temperature phase. Using the Janus II custom-built supercomputer, the spin-glass correlation function is studied locally. Dramatic fluctuations are found when pairs of sites at the same distance are compared. The scaling of these fluctuations, as the spin-glass coherence length grows with time, is characterized through the computation of the singularity spectrum and its corresponding Legendre transform. A comparatively small number of site pairs controls the average correlation that governs the response to a magnetic field. We explain how this scenario of dramatic fluctuations (at length scales smaller than the coherence length) can be reconciled with the smooth, self-averaging behavior that has long been considered to describe spin-glass dynamics.

2.
Proc Natl Acad Sci U S A ; 116(31): 15350-15355, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31311870

RESUMEN

The Mpemba effect occurs when a hot system cools faster than an initially colder one, when both are refrigerated in the same thermal reservoir. Using the custom-built supercomputer Janus II, we study the Mpemba effect in spin glasses and show that it is a nonequilibrium process, governed by the coherence length ξ of the system. The effect occurs when the bath temperature lies in the glassy phase, but it is not necessary for the thermal protocol to cross the critical temperature. In fact, the Mpemba effect follows from a strong relationship between the internal energy and ξ that turns out to be a sure-tell sign of being in the glassy phase. Thus, the Mpemba effect presents itself as an intriguing avenue for the experimental study of the coherence length in supercooled liquids and other glass formers.

3.
Proc Natl Acad Sci U S A ; 114(8): 1838-1843, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28174274

RESUMEN

We have performed a very accurate computation of the nonequilibrium fluctuation-dissipation ratio for the 3D Edwards-Anderson Ising spin glass, by means of large-scale simulations on the special-purpose computers Janus and Janus II. This ratio (computed for finite times on very large, effectively infinite, systems) is compared with the equilibrium probability distribution of the spin overlap for finite sizes. Our main result is a quantitative statics-dynamics dictionary, which could allow the experimental exploration of important features of the spin-glass phase without requiring uncontrollable extrapolations to infinite times or system sizes.

4.
Sensors (Basel) ; 19(19)2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31597305

RESUMEN

Successive approximation register (SAR) analog-to-digital converter (ADC) manufacturers recommend the use of a driver amplifier to achieve the best performance. When a driver amplifier is not used, the conversion speed is severely penalized because of the need to meet the settling time constraint. This paper proposes a simple digital correction method to raise the performance (conversion speed and/or accuracy) when the acquisition chain lacks a driver amplifier. It is intended to reduce the cost, size and power consumption of the conditioning circuit while maintaining acceptable performance. The method is applied to the measurement of the output power delivered by a series resonant inverter for domestic induction heating.

5.
Proc Natl Acad Sci U S A ; 109(17): 6452-6, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22493229

RESUMEN

Spin glasses are a longstanding model for the sluggish dynamics that appear at the glass transition. However, spin glasses differ from structural glasses in a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behavior of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d < 6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method.

6.
PLoS One ; 18(2): e0278346, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36749765

RESUMEN

Several emerging non-volatile (NV) memory technologies are rising as interesting alternatives to build the Last-Level Cache (LLC). Their advantages, compared to SRAM memory, are higher density and lower static power, but write operations wear out the bitcells to the point of eventually losing their storage capacity. In this context, this paper presents a novel LLC organization designed to extend the lifetime of the NV data array and a procedure to forecast in detail the capacity and performance of such an NV-LLC over its lifetime. From a methodological point of view, although different approaches are used in the literature to analyze the degradation of an NV-LLC, none of them allows to study in detail its temporal evolution. In this sense, this work proposes a forecasting procedure that combines detailed simulation and prediction, allowing an accurate analysis of the impact of different cache control policies and mechanisms (replacement, wear-leveling, compression, etc.) on the temporal evolution of the indices of interest, such as the effective capacity of the NV-LLC or the system IPC. We also introduce L2C2, a LLC design intended for implementation in NV memory technology that combines fault tolerance, compression, and internal write wear leveling for the first time. Compression is not used to store more blocks and increase the hit rate, but to reduce the write rate and increase the lifetime during which the cache supports near-peak performance. In addition, to support byte loss without performance drop, L2C2 inherently allows N redundant bytes to be added to each cache entry. Thus, L2C2+N, the endurance-scaled version of L2C2, allows balancing the cost of redundant capacity with the benefit of longer lifetime. For instance, as a use case, we have implemented the L2C2 cache with STT-RAM technology. It has affordable hardware overheads compared to that of a baseline NV-LLC without compression in terms of area, latency and energy consumption, and increases up to 6-37 times the time in which 50% of the effective capacity is degraded, depending on the variability in the manufacturing process. Compared to L2C2, L2C2+6 which adds 6 bytes of redundant capacity per entry, that means 9.1% of storage overhead, can increase up to 1.4-4.3 times the time in which the system gets its initial peak performance degraded.


Asunto(s)
Algoritmos , Compresión de Datos , Computadores , Simulación por Computador , Comercio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA