Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nat Immunol ; 18(10): 1150-1159, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28805811

RESUMEN

Caveolin-1 (Cav1) regulates the nanoscale organization and compartmentalization of the plasma membrane. Here we found that Cav1 controlled the distribution of nanoclusters of isotype-specific B cell antigen receptors (BCRs) on the surface of B cells. In mature B cells stimulated with antigen, the immunoglobulin M BCR (IgM-BCR) gained access to lipid domains enriched for GM1 glycolipids, by a process that was dependent on the phosphorylation of Cav1 by the Src family of kinases. Antigen-induced reorganization of nanoclusters of IgM-BCRs and IgD-BCRs regulated BCR signaling in vivo. In immature Cav1-deficient B cells, altered nanoscale organization of IgM-BCRs resulted in a failure of receptor editing and a skewed repertoire of B cells expressing immunoglobulin-µ heavy chains with hallmarks of poly- and auto-reactivity, which ultimately led to autoimmunity in mice. Thus, Cav1 emerges as a cell-intrinsic regulator that prevents B cell-induced autoimmunity by means of its role in plasma-membrane organization.


Asunto(s)
Linfocitos B/inmunología , Linfocitos B/metabolismo , Caveolina 1/metabolismo , Tolerancia Inmunológica , Receptores de Antígenos de Linfocitos B/metabolismo , Animales , Autoinmunidad/genética , Autoinmunidad/inmunología , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Caveolina 1/genética , Expresión Génica , Tolerancia Inmunológica/genética , Inmunoglobulina D/inmunología , Inmunoglobulina D/metabolismo , Inmunoglobulina M/inmunología , Inmunoglobulina M/metabolismo , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Ratones , Ratones Noqueados , Ratones Transgénicos , Fosforilación , Unión Proteica , Receptores de Antígenos de Linfocitos B/genética
2.
Cell ; 146(1): 148-63, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21729786

RESUMEN

Mechanotransduction is a key determinant of tissue homeostasis and tumor progression. It is driven by intercellular adhesions, cell contractility, and forces generated within the microenvironment and is dependent on extracellular matrix composition, organization, and compliance. We show that caveolin-1 (Cav1) favors cell elongation in three-dimensional cultures and promotes Rho- and force-dependent contraction, matrix alignment, and microenvironment stiffening through regulation of p190RhoGAP. In turn, microenvironment remodeling by Cav1 fibroblasts forces cell elongation. Cav1-deficient mice have disorganized stromal tissue architecture. Stroma associated with human carcinomas and melanoma metastases is enriched in Cav1-expressing carcinoma-associated fibroblasts (CAFs). Cav1 expression in breast CAFs correlates with low survival, and Cav1 depletion in CAFs decreases CAF contractility. Consistently, fibroblast expression of Cav1, through p190RhoGAP regulation, favors directional migration and invasiveness of carcinoma cells in vitro. In vivo, stromal Cav1 remodels peri- and intratumoral microenvironments to facilitate tumor invasion, correlating with increased metastatic potency. Thus, Cav1 modulates tissue responses through force-dependent architectural regulation of the microenvironment.


Asunto(s)
Caveolina 1/metabolismo , Metástasis de la Neoplasia/patología , Neoplasias/patología , Animales , Movimiento Celular , Fibroblastos/patología , Humanos , Melanoma/patología , Ratones , Ratones Noqueados
3.
EMBO J ; 31(3): 534-51, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22157745

RESUMEN

The small GTPase Rac1 plays important roles in many processes, including cytoskeletal reorganization, cell migration, cell-cycle progression and gene expression. The initiation of Rac1 signalling requires at least two mechanisms: GTP loading via the guanosine triphosphate (GTP)/guanosine diphosphate (GDP) cycle, and targeting to cholesterol-rich liquid-ordered plasma membrane microdomains. Little is known about the molecular mechanisms governing this specific compartmentalization. We show that Rac1 can incorporate palmitate at cysteine 178 and that this post-translational modification targets Rac1 for stabilization at actin cytoskeleton-linked ordered membrane regions. Palmitoylation of Rac1 requires its prior prenylation and the intact C-terminal polybasic region and is regulated by the triproline-rich motif. Non-palmitoylated Rac1 shows decreased GTP loading and lower association with detergent-resistant (liquid-ordered) membranes (DRMs). Cells expressing no Rac1 or a palmitoylation-deficient mutant have an increased content of disordered membrane domains, and markers of ordered membranes isolated from Rac1-deficient cells do not correctly partition in DRMs. Importantly, cells lacking Rac1 palmitoylation show spreading and migration defects. These data identify palmitoylation as a mechanism for Rac1 function in actin cytoskeleton remodelling by controlling its membrane partitioning, which in turn regulates membrane organization.


Asunto(s)
Membrana Celular/metabolismo , Ácido Palmítico/metabolismo , Proteína de Unión al GTP rac1/fisiología , Secuencia de Aminoácidos , Biopolímeros/metabolismo , Guanosina Trifosfato/metabolismo , Datos de Secuencia Molecular , Prenilación de Proteína , Homología de Secuencia de Aminoácido
4.
EMBO J ; 30(19): 3913-27, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21873980

RESUMEN

The activation of the Rac1 GTPase during cell signalling entails its translocation from the cytosol to membranes, release from sequestering Rho GDP dissociation inhibitors (RhoGDI), and GDP/GTP exchange. In addition to those steps, we show here that optimal Rac1 activation during cell signalling requires the engagement of a downstream, cytoskeletal-based feedback loop nucleated around the cytoskeletal protein coronin 1A and the Rac1 exchange factor ArhGEF7. These two proteins form a cytosolic complex that, upon Rac1-driven F-actin polymerization, translocates to juxtamembrane areas where it expands the pool of activated, membrane-bound Rac1. Such activity requires the formation of an F-actin/ArhGEF7-dependent physical complex of coronin 1A with Pak1 and RhoGDIα that, once assembled, promotes the Pak1-dependent dissociation of Rac1 from the Rac1/RhoGDIα complex and subsequent Rac1 activation. Genetic evidence demonstrates that this relay circuit is essential for generating sustained Rac1 activation levels during cell signalling.


Asunto(s)
Citoesqueleto/metabolismo , Regulación de la Expresión Génica , Proteínas de Microfilamentos/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Actinas/metabolismo , Animales , Células COS , Chlorocebus aethiops , Citosol/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Cinética , Modelos Biológicos , Transporte de Proteínas , Transducción de Señal , Inhibidor alfa de Disociación del Nucleótido Guanina rho , Inhibidores de la Disociación del Nucleótido Guanina rho-Específico
11.
Antioxidants (Basel) ; 11(8)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36009317

RESUMEN

All processes in human physiology relies on homeostatic mechanisms which require the activation of specific control circuits to adapt the changes imposed by external stimuli. One of the critical modulators of homeostatic balance is autophagy, a catabolic process that is responsible of the destruction of long-lived proteins and organelles through a lysosome degradative pathway. Identification of the mechanism underlying autophagic flux is considered of great importance as both protective and detrimental functions are linked with deregulated autophagy. At the mechanistic and regulatory levels, autophagy is activated in response to diverse stress conditions (food deprivation, hyperthermia and hypoxia), even a novel perspective highlight the potential role of physical forces in autophagy modulation. To understand the crosstalk between all these controlling mechanisms could give us new clues about the specific contribution of autophagy in a wide range of diseases including vascular disorders, inflammation and cancer. Of note, any homeostatic control critically depends in at least two additional and poorly studied interdependent components: a receptor and its downstream effectors. Addressing the selective receptors involved in autophagy regulation is an open question and represents a new area of research in this field. G-protein coupled receptors (GPCRs) represent one of the largest and druggable targets membrane receptor protein superfamily. By exerting their action through G proteins, GPCRs play fundamental roles in the control of cellular homeostasis. Novel studies have shown Gαq, a subunit of heterotrimeric G proteins, as a core modulator of mTORC1 and autophagy, suggesting a fundamental contribution of Gαq-coupled GPCRs mechanisms in the control of this homeostatic feedback loop. To address how GPCR-G proteins machinery integrates the response to different stresses including oxidative conditions and mechanical stimuli, could provide deeper insight into new signaling pathways and open potential and novel therapeutic strategies in the modulation of different pathological conditions.

12.
Cells ; 10(8)2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34440759

RESUMEN

Cells and tissues are continuously exposed to both chemical and physical stimuli and dynamically adapt and respond to this variety of external cues to ensure cellular homeostasis, regulated development and tissue-specific differentiation. Alterations of these pathways promote disease progression-a prominent example being cancer. Rho GTPases are key regulators of the remodeling of cytoskeleton and cell membranes and their coordination and integration with different biological processes, including cell polarization and motility, as well as other signaling networks such as growth signaling and proliferation. Apart from the control of GTP-GDP cycling, Rho GTPase activity is spatially and temporally regulated by post-translation modifications (PTMs) and their assembly onto specific protein complexes, which determine their controlled activity at distinct cellular compartments. Although Rho GTPases were traditionally conceived as targeted from the cytosol to the plasma membrane to exert their activity, recent research demonstrates that active pools of different Rho GTPases also localize to endomembranes and the nucleus. In this review, we discuss how PTM-driven modulation of Rho GTPases provides a versatile mechanism for their compartmentalization and functional regulation. Understanding how the subcellular sorting of active small GTPase pools occurs and what its functional significance is could reveal novel therapeutic opportunities.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas de Unión al GTP rho/metabolismo , Animales , Humanos , Isoenzimas , Transporte de Proteínas , Transducción de Señal
13.
Mol Biol Cell ; 18(7): 2768-77, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17507652

RESUMEN

In this article we analyze the mechanisms by which the C-terminal four amino acids of inducible nitric oxide synthase (NOS2) interact with proteins that contain PDZ (PSD-95/DLG/ZO-1) domains resulting in the translocation of NOS2 to the cellular apical domain. It has been reported that human hepatic NOS2 associates to EBP50, a protein with two PDZ domains present in epithelial cells. We describe herein that NOS2 binds through its four carboxy-terminal residues to CAP70, a protein that contains four PDZ modules that is targeted to apical membranes. Interestingly, this interaction augments both the cytochrome c reductase and .NO-synthase activities of NOS2. Binding of CAP70 to NOS2 also results in an increase in the population of active NOS2 dimers. In addition, CAP70 participates in the correct subcellular targeting of NOS2 in a process that is also dependent on the acylation state of the N-terminal end of NOS2. Hence, nonpalmitoylated NOS2 is unable to progress toward the apical side of the cell despite its interaction with either EBP50 or CAP70. Likewise, if we abrogate the interaction of NOS2 with either EBP50 or CAP70 by fusing the GFP reporter to the carboxy-terminal end of NOS2 palmitoylation is not sufficient to confer an apical targeting.


Asunto(s)
Proteínas Portadoras/metabolismo , Polaridad Celular , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/metabolismo , Aminoácidos/metabolismo , Animales , Proteínas Portadoras/genética , Citosol/metabolismo , Perros , Regulación hacia Abajo/genética , Células Epiteliales/enzimología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Isoenzimas/química , Isoenzimas/metabolismo , Hígado/enzimología , Proteínas de la Membrana , Ratones , Óxido Nítrico Sintasa de Tipo II/química , Péptidos/metabolismo , Fosfoproteínas/metabolismo , Unión Proteica , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Transfección
14.
J Cell Biol ; 219(11)2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33053168

RESUMEN

The composition and physical properties of the extracellular matrix (ECM) critically influence tumor progression, but the molecular mechanisms underlying ECM layering are poorly understood. Tumor-stroma interaction critically depends on cell communication mediated by exosomes, small vesicles generated within multivesicular bodies (MVBs). We show that caveolin-1 (Cav1) centrally regulates exosome biogenesis and exosomal protein cargo sorting through the control of cholesterol content at the endosomal compartment/MVBs. Quantitative proteomics profiling revealed that Cav1 is required for exosomal sorting of ECM protein cargo subsets, including Tenascin-C (TnC), and for fibroblast-derived exosomes to efficiently deposit ECM and promote tumor invasion. Cav1-driven exosomal ECM deposition not only promotes local stromal remodeling but also the generation of distant ECM-enriched stromal niches in vivo. Cav1 acts as a cholesterol rheostat in MVBs, determining sorting of ECM components into specific exosome pools and thus ECM deposition. This supports a model by which Cav1 is a central regulatory hub for tumor-stroma interactions through a novel exosome-dependent ECM deposition mechanism.


Asunto(s)
Caveolina 1/fisiología , Exosomas/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Cuerpos Multivesiculares/metabolismo , Proteoma/metabolismo , Tenascina/fisiología , Animales , Fibroblastos/citología , Ratones , Ratones Noqueados
15.
Sci Rep ; 6: 27351, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27272971

RESUMEN

The mitochondria-associated membrane (MAM) is a specialized subdomain of the endoplasmic reticulum (ER) which acts as an intracellular signaling hub. MAM dysfunction has been related to liver disease. We report a high-throughput mass spectrometry-based proteomics characterization of MAMs from mouse liver, which portrays them as an extremely complex compartment involved in different metabolic processes, including steroid metabolism. Interestingly, we identified caveolin-1 (CAV1) as an integral component of hepatic MAMs, which determine the relative cholesterol content of these ER subdomains. Finally, a detailed comparative proteomics analysis between MAMs from wild type and CAV1-deficient mice suggests that functional CAV1 contributes to the recruitment and regulation of intracellular steroid and lipoprotein metabolism-related processes accrued at MAMs. The potential impact of these novel aspects of CAV1 biology on global cell homeostasis and disease is discussed.


Asunto(s)
Caveolina 1/metabolismo , Retículo Endoplásmico/metabolismo , Hepatocitos/metabolismo , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Animales , Fraccionamiento Celular , Espectrometría de Masas , Ratones Endogámicos C57BL , Proteoma/análisis
16.
Cell Chem Biol ; 23(11): 1372-1382, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27746127

RESUMEN

Embryonic stem cells (ESC) have the potential to generate all the cell lineages that form the body. However, the molecular mechanisms underlying ESC differentiation and especially the role of alternative splicing in this process remain poorly understood. Here, we show that the alternative splicing regulator MBNL1 promotes generation of the atypical calcineurin Aß variant CnAß1 in mouse ESCs (mESC). CnAß1 has a unique C-terminal domain that drives its localization mainly to the Golgi apparatus by interacting with Cog8. CnAß1 regulates the intracellular localization and activation of the mTORC2 complex. CnAß1 knockdown results in delocalization of mTORC2 from the membrane to the cytoplasm, inactivation of the AKT/GSK3ß/ß-catenin signaling pathway, and defective mesoderm specification. In summary, here we unveil the structural basis for the mechanism of action of CnAß1 and its role in the differentiation of mESCs to the mesodermal lineage.


Asunto(s)
Calcineurina/metabolismo , Células Madre Embrionarias de Ratones/citología , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Calcineurina/análisis , Diferenciación Celular , Línea Celular , Aparato de Golgi/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Complejos Multiproteicos/análisis , Transducción de Señal , Serina-Treonina Quinasas TOR/análisis
17.
Dev Cell ; 32(3): 318-34, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25640224

RESUMEN

Nuclear membrane microdomains are proposed to act as platforms for regulation of nuclear function, but little is known about the mechanisms controlling their formation. Organization of the plasma membrane is regulated by actin polymerization, and the existence of an actin pool in the nucleus suggests that a similar mechanism might operate here. We show that nuclear membrane organization and morphology are regulated by the nuclear level of active Rac1 through actin polymerization-dependent mechanisms. Rac1 nuclear export is mediated by two internal nuclear export signals and through its interaction with nucleophosmin-1 (B23), which acts as a Rac1 chaperone inside the nucleus. Rac1 nuclear accumulation alters the balance between cytosolic Rac1 and Rho, increasing RhoA signaling in the cytoplasm and promoting a highly invasive phenotype. Nuclear Rac1 shuttling is a finely tuned mechanism for controlling nuclear shape and organization and cell invasiveness.


Asunto(s)
Actinas/metabolismo , Citosol/metabolismo , Transporte Activo de Núcleo Celular , Membrana Celular/metabolismo , Citoplasma/metabolismo , Humanos , Invasividad Neoplásica , Proteínas Nucleares/metabolismo , Nucleofosmina , Transducción de Señal/fisiología , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
18.
FEBS Lett ; 544(1-3): 262-7, 2003 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-12782328

RESUMEN

Recent data from multiple laboratories indicate that upon infection, many different families of viruses hijack the dynein motor machinery and become transported in a retrograde manner towards the cell nucleus. In certain cases, one of the dynein light chains, LC8, is involved in this interaction. Using a library of overlapping dodecapeptides synthesized on a cellulose membrane (pepscan technique) we have analyzed the interaction of the dynein light chain LC8 with 17 polypeptides of viral origin. We demonstrate the strong binding of two herpesvirus polypeptides, the human adenovirus protease, vaccinia virus polymerase, human papillomavirus E4 protein, yam mosaic virus polyprotein, human respiratory syncytial virus attachment glycoprotein, human coxsackievirus capsid protein and the product of the AMV179 gene of an insect poxvirus to LC8. Our data corroborate the manipulation of the dynein macromolecular complex of the cell during viral infection and point towards the light chain LC8 as one of the most frequently used targets of virus manipulation.


Asunto(s)
Bioquímica/métodos , Proteínas Portadoras/química , Proteínas de Drosophila , Proteínas Virales/química , Adenoviridae/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Portadoras/metabolismo , Celulosa/química , Dineínas , Herpesviridae/genética , Datos de Secuencia Molecular , Biosíntesis de Péptidos , Péptidos/química , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Retroviridae/metabolismo , Homología de Secuencia de Aminoácido
19.
J Cell Sci ; 119(Pt 8): 1558-69, 2006 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-16569659

RESUMEN

We have analysed the mechanism by which palmitoylation permits the progression of nitric oxide synthase 2 (NOS2) along the ER-Golgi-TGN pathway. Introduction of an additional myristoylation site at the N-terminus of NOS2 resulted in a chimera that displayed an enhanced association with the particulate fraction and with the plasma membrane but did not display increased enzymatic activity. In the absence of palmitoylation, introduction of a surrogate myristoylation site resulted in a mutant NOS2 with only 25% activity compared with the wild-type enzyme. Hence, the novel surrogate myristoyl moiety not only failed to increase NOS2 activity when introduced in a wild-type sequence environment, but was also unable to rescue the inactive phenotype of the Cys3Ser mutant. Introduction of an additional palmitoylatable Cys at position 2 of the wild-type sequence resulted in a chimera that associated to a larger degree with membranes and displayed decreased activity. Our data indicate that palmitoylation of inducible NOS at position 3 exquisitely determines its transit along the secretory pathway following a route that cannot be mimicked by a surrogate myristoylation or by a palmitate at position 2. In addition, the exit of NOS2 from the TGN and the accumulation in the cellular plasma membrane per se did not correlate with increased .NO synthesis.


Asunto(s)
Aparato de Golgi/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Aminoácidos/química , Animales , Células COS , Dominio Catalítico , Caveolina 1/metabolismo , Membrana Celular/metabolismo , Chlorocebus aethiops , Citocinas/farmacología , Dimerización , Datos de Secuencia Molecular , Mutación , Ácido Mirístico/metabolismo , Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo II/química , Óxido Nítrico Sintasa de Tipo II/fisiología , Ácido Palmítico/metabolismo , Transporte de Proteínas , Homología de Secuencia de Aminoácido , Transducción de Señal
20.
J Cell Sci ; 115(Pt 15): 3119-30, 2002 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12118067

RESUMEN

Using recursive PCR, we created an artificial protein sequence that consists of a consensus myristoylation motif (MGCTLS) followed by the triplet AGS repeated nine times and fused to the GFP reporter. This linker-GFP sequence was utilized as a base to produce multiple mutants that were used to transfect COS-7 cells. Constructs where a 'palmitoylable' cysteine residue was progressively moved apart from the myristoylation site to positions 3, 9, 15 and 21 of the protein sequence were made, and these mutants were used to investigate the effect of protein myristoylation on subsequent palmitoylation, subcellular localization, membrane association and caveolin-1 colocalization. In all cases, dual acylation of the GFP chimeras correlated with translocation to Triton X-100-insoluble cholesterol/sphingomyelin-enriched subdomains. Whereas a strong Golgi labeling was observed in all the myristoylated chimeras, association with the plasma membrane was only observed in the dually acylated constructs. Taking into account the conflicting data regarding the existence and specificity of cellular palmitoyl-transferases, our results provide evidence that de-novo-designed sequences can be efficiently S-acylated with palmitic acid in vivo, strongly supporting the hypothesis that non-enzymatic protein palmitoylation can occur within mammalian cells. Additionally, this palmitoylation results in the translocation of the recombinant construct to low-fluidity domains in a myristate-palmitate distance-dependent manner.


Asunto(s)
Compartimento Celular/genética , Membrana Celular/metabolismo , Células Eucariotas/metabolismo , Ácido Mirístico/metabolismo , Ácido Palmítico/metabolismo , Transporte de Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes de Fusión , Secuencia de Aminoácidos/genética , Animales , Células COS , Caveolina 1 , Caveolinas/metabolismo , Colesterol/deficiencia , Citoplasma/genética , Citoplasma/metabolismo , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes , Microdominios de Membrana/metabolismo , Microscopía Confocal , Octoxinol , Palmitatos/farmacología , Proteínas Recombinantes de Fusión/síntesis química , Proteínas Recombinantes de Fusión/genética , Solubilidad/efectos de los fármacos , Esfingomielinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA