Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Endocrinol Metab ; 306(1): E1-E13, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24085037

RESUMEN

Insulin is a major regulator of glucose metabolism, stimulating its mitochondrial oxidation in skeletal muscle cells. Mitochondria are dynamic organelles that can undergo structural remodeling in order to cope with these ever-changing metabolic demands. However, the process by which mitochondrial morphology impacts insulin signaling in the skeletal muscle cells remains uncertain. To address this question, we silenced the mitochondrial fusion proteins Mfn2 and Opa1 and assessed insulin-dependent responses in L6 rat skeletal muscle cells. We found that mitochondrial fragmentation attenuates insulin-stimulated Akt phosphorylation, glucose uptake and cell respiratory rate. Importantly, we found that insulin induces a transient rise in mitochondrial Ca(2+) uptake, which was attenuated by silencing Opa1 or Mfn2. Moreover, treatment with Ruthenium red, an inhibitor of mitochondrial Ca(2+) uptake, impairs Akt signaling without affecting mitochondrial dynamics. All together, these results suggest that control of mitochondrial Ca(2+) uptake by mitochondrial morphology is a key event for insulin-induced glucose uptake.


Asunto(s)
Calcio/metabolismo , Glucosa/metabolismo , Insulina/farmacología , Mitocondrias Musculares/ultraestructura , Músculo Esquelético/ultraestructura , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Anticuerpos/farmacología , Línea Celular , GTP Fosfohidrolasas/antagonistas & inhibidores , GTP Fosfohidrolasas/fisiología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/fisiología , Mitocondrias Musculares/metabolismo , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/fisiología , Músculo Esquelético/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Ratas , Transducción de Señal/fisiología
2.
IUBMB Life ; 65(7): 593-601, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23671040

RESUMEN

Insulin-like growth factor-1 (IGF-1) signaling is a key pathway in the control of cell growth and survival. Three critical nodes in the IGF-1 signaling pathway have been described in cardiomyocytes: protein kinase Akt/mammalian target of rapamycin (mTOR), Ras/Raf/extracellular signal-regulated kinase (ERK), and phospholipase C (PLC)/inositol 1,4,5-triphosphate (InsP3 )/Ca(2+) . The Akt/mTOR and Ras/Raf/ERK signaling arms govern survival in the settings of cardiac stress and hypertrophic growth. By contrast, PLC/InsP3 /Ca(2+) functions to regulate metabolic adaptability and gene transcription. Autophagy is a catabolic process involved in protein degradation, organelle turnover, and nonselective breakdown of cytoplasmic components during nutrient starvation or stress. In the heart, autophagy is observed in a variety of human pathologies, where it can be either adaptive or maladaptive, depending on the context. We proposed the hypothesis that IGF-1 protects the heart by rescuing the mitochondrial metabolism and the energetics state, reducing cell death and controls the potentially exacerbate autophagic response to nutritional stress. In light of the importance of IGF-1 and autophagy in the heart, we review here IGF-1 signaling and autophagy regulation in the context of cardiomyocyte nutritional stress.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Fisiológico , Autofagia , Proliferación Celular , Humanos , Mitocondrias/metabolismo , Miocitos Cardíacos/fisiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA