Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Mol Cell Cardiol ; 132: 164-177, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31103477

RESUMEN

MK5 is a protein serine/threonine kinase activated by p38 MAPK and the atypical MAPKs ERK3 and ERK4. Although little is known of the physiological role of MK5 in the heart, both hypertrophic growth and the increase in collagen 1-α1 mRNA induced by increased afterload are attenuated in hearts of MK5 haploinsufficient (MK5+/-) mice. MK5 transcripts are detected at high levels in the left ventricular myocardium; however, MK5 immunoreactivity is detected in adult cardiac fibroblasts, but not myocytes. The present study was to determine if MK5 has a potential role in remodeling of the extracellular matrix. Ventricular fibroblasts were isolated from MK5+/+, MK5+/-, or MK5-/- mice and maintained in culture on either compliant (8 kPa) or rigid substrates to obtain quiescent fibroblasts or activated myofibroblasts, respectively. In quiescent fibroblasts, reduced MK5 had little effect: BMP7 and TGF-ß1 mRNA was increased in MK5+/- and MK5-/-.cells, respectively. Ang-II altered the abundance of numerous transcripts in an MK5-sensitive manner. Both collagen 1-α1 mRNA and secreted type 1 collagen immunoreactivity were increased by Ang-II in wild type but not MK5-deficient fibroblasts. The effects of deleting MK5 were quite different in myofibroblasts: both the abundance of collagen 1-α1 mRNA and secreted type 1 collagen immunoreactivity elevated in the absence of added Ang-II and addition of Ang-II failed to evoke a further increase in either. In addition, whereas type I collagen immunoreactivity was distributed throughout the cytosol of wild-type myofibroblasts, it was perinuclear in MK5-/- myofibroblasts. Furthermore, in MK5-deficient myofibroblasts the abundance of collagen 3-α2, Timp3, Smad 6, Smad 7, TGF-ß3, and snail homolog 1 transcripts was increased whereas integrin ß3, latent TGF-ß binding protein 1, thrombospondin 1, hepatocyte growth factor, and interleukin 13 were decreased. Finally, fibroblast contraction was decreased upon knocking down MK5. These results indicate that MK5 may be involved in fibroblast-mediated regulation of extracellular matrix homeostasis.


Asunto(s)
Colágeno/metabolismo , Proteínas de la Matriz Extracelular/genética , Fibronectinas/metabolismo , Ventrículos Cardíacos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Miofibroblastos/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Transcriptoma , Animales , Proteínas de la Matriz Extracelular/metabolismo , Ventrículos Cardíacos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miofibroblastos/citología
2.
Am J Physiol Heart Circ Physiol ; 316(6): H1281-H1296, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30901279

RESUMEN

MK5 is a protein serine/threonine kinase activated by p38, ERK3, and ERK4 MAPKs. MK5 mRNA and immunoreactivity are detected in mouse cardiac fibroblasts, and MK5 haplodeficiency attenuates the increase in collagen 1-α1 mRNA evoked by pressure overload. The present study examined the effect of MK5 haplodeficiency on reparative fibrosis following myocardial infarction (MI). Twelve-week-old MK5+/- and wild-type littermate (MK5+/+) mice underwent ligation of the left anterior descending coronary artery (LADL). Surviving mice were euthanized 8 or 21 days post-MI. Survival rates did not differ significantly between MK5+/+ and MK5+/- mice, with rupture of the LV wall being the primary cause of death. Echocardiographic imaging revealed similar increases in LV end-diastolic diameter, myocardial performance index, and wall motion score index in LADL-MK5+/+ and LADL-MK5+/- mice. Area at risk did not differ between LADL-MK5+/+ and LADL-MK5+/- hearts. In contrast, infarct size, scar area, and scar collagen content were reduced in LADL-MK5+/- hearts. Immunohistochemical analysis of mice experiencing heart rupture revealed increased MMP-9 immunoreactivity in the infarct border zone of LADL-MK5+/- hearts compared with LADL-MK5+/+. Although inflammatory cell infiltration was similar in LADL-MK5+/+ and LADL-MK5+/- hearts, angiogenesis was more pronounced in the infarct border zone of LADL-MK5+/- mice. Characterization of ventricular fibroblasts revealed reduced motility and proliferation in fibroblasts isolated from MK5-/- mice compared with those from both wild-type and haplodeficient mice. siRNA-mediated knockdown of MK5 in fibroblasts from wild-type mice also impaired motility. Hence, reduced MK5 expression alters fibroblast function and scar morphology but not mortality post-MI. NEW & NOTEWORTHY MK5/PRAK is a protein serine/threonine kinase activated by p38 MAPK and/or atypical MAPKs ERK3/4. MK5 haplodeficiency reduced infarct size, scar area, and scar collagen content post-myocardial infarction. Motility and proliferation were reduced in cultured MK5-null cardiac myofibroblasts.


Asunto(s)
Cicatriz/enzimología , Colágeno/metabolismo , Haploinsuficiencia , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Infarto del Miocardio/enzimología , Miocardio/enzimología , Miofibroblastos/enzimología , Proteínas Serina-Treonina Quinasas/deficiencia , Cicatrización de Heridas , Animales , Movimiento Celular , Proliferación Celular , Células Cultivadas , Cicatriz/patología , Cicatriz/fisiopatología , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Miofibroblastos/patología , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Función Ventricular Izquierda , Remodelación Ventricular
3.
Am J Physiol Heart Circ Physiol ; 313(1): H46-H58, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28432058

RESUMEN

MAPK-activated protein kinase-5 (MK5) is a protein serine/threonine kinase that is activated by p38 MAPK and the atypical MAPKs ERK3 and ERK4. The physiological function(s) of MK5 remains unknown. Here, we examined the effect of MK5 haplodeficiency on cardiac function and myocardial remodeling. At 12 wk of age, MK5 haplodeficient mice (MK5+/-) were smaller than age-matched wild-type littermates (MK5+/+), with similar diastolic function but reduced systolic function. Transverse aortic constriction (TAC) was used to induce chronic pressure overload in 12-wk-old male MK5+/- and MK5+/+ mice. Two weeks post-TAC, heart weight-to-tibia length ratios were similarly increased in MK5+/- and MK5+/+ hearts, as was the abundance of B-type natriuretic peptide and ß-myosin heavy chain mRNA. Left ventricular ejection fraction was reduced in both MK5+/+ and MK5+/- mice, whereas regional peak systolic tissue velocities were reduced and isovolumetric relaxation time was prolonged in MK5+/+ hearts but not in MK5+/- hearts. The TAC-induced increase in collagen type 1-α1 mRNA observed in MK5+/+ hearts was markedly attenuated in MK5+/- hearts. Eight weeks post-TAC, systolic function was equally impaired in MK5+/+ and MK5+/- mice. In contrast, the increase in E wave deceleration rate and progression of hypertrophy observed in TAC MK5+/+ mice were attenuated in TAC MK5+/- mice. MK5 immunoreactivity was detected in adult fibroblasts but not in myocytes. MK5+/+, MK5+/-, and MK5-/- fibroblasts all expressed α-smooth muscle actin in culture. Hence, reduced MK5 expression in cardiac fibroblasts was associated with the attenuation of both hypertrophy and development of a restrictive filling pattern during myocardial remodeling in response to chronic pressure overload.NEW & NOTEWORTHY MAPK-activated protein kinase-5 (MK5)/p38-regulated/activated protein kinase is a protein serine/threonine kinase activated by p38 MAPK and/or the atypical MAPKs ERK3 and ERK4. MK5 immunoreactivity was detected in adult ventricular fibroblasts but not in myocytes. MK5 haplodeficiency attenuated the progression of hypertrophy, reduced collagen type 1 mRNA, and protected diastolic function in response to chronic pressure overload.


Asunto(s)
Hipertrofia Ventricular Izquierda/fisiopatología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Disfunción Ventricular Izquierda/fisiopatología , Remodelación Ventricular/fisiología , Animales , Haplotipos/genética , Hipertrofia Ventricular Izquierda/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Miocárdica , Volumen Sistólico , Disfunción Ventricular Izquierda/complicaciones
4.
J Am Heart Assoc ; 10(4): e017791, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33533257

RESUMEN

Background Mitogen-activated protein kinase-activated protein kinase-2 (MK2) is a protein serine/threonine kinase activated by p38α/ß. Herein, we examine the cardiac phenotype of pan MK2-null (MK2-/-) mice. Methods and Results Survival curves for male MK2+/+ and MK2-/- mice did not differ (Mantel-Cox test, P=0.580). At 12 weeks of age, MK2-/- mice exhibited normal systolic function along with signs of possible early diastolic dysfunction; however, aging was not associated with an abnormal reduction in diastolic function. Both R-R interval and P-R segment durations were prolonged in MK2-deficient mice. However, heart rates normalized when isolated hearts were perfused ex vivo in working mode. Ca2+ transients evoked by field stimulation or caffeine were similar in ventricular myocytes from MK2+/+ and MK2-/- mice. MK2-/- mice had lower body temperature and an age-dependent reduction in body weight. mRNA levels of key metabolic genes, including Ppargc1a, Acadm, Lipe, and Ucp3, were increased in hearts from MK2-/- mice. For equivalent respiration rates, mitochondria from MK2-/- hearts showed a significant decrease in Ca2+ sensitivity to mitochondrial permeability transition pore opening. Eight weeks of pressure overload increased left ventricular mass in MK2+/+ and MK2-/- mice; however, after 2 weeks the increase was significant in MK2+/+ but not MK2-/- mice. Finally, the pressure overload-induced decrease in systolic function was attenuated in MK2-/- mice 2 weeks, but not 8 weeks, after constriction of the transverse aorta. Conclusions Collectively, these results implicate MK2 in (1) autonomic regulation of heart rate, (2) cardiac mitochondrial function, and (3) the early stages of myocardial remodeling in response to chronic pressure overload.


Asunto(s)
Presión Sanguínea/fisiología , Bradicardia/fisiopatología , Cardiomiopatía Hipertrófica/fisiopatología , Frecuencia Cardíaca/fisiología , Mitocondrias Cardíacas/metabolismo , Función Ventricular Izquierda/fisiología , Remodelación Ventricular , Animales , Bradicardia/diagnóstico , Bradicardia/metabolismo , Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/metabolismo , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA