Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Immunity ; 47(1): 107-117.e8, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28709804

RESUMEN

Regulatory T (Treg) cells expressing the transcription factor Foxp3 are critical for the prevention of autoimmunity and the suppression of anti-tumor immunity. The major self-antigens recognized by Treg cells remain undefined, representing a substantial barrier to the understanding of immune regulation. Here, we have identified natural Treg cell ligands in mice. We found that two recurrent Treg cell clones, one prevalent in prostate tumors and the other associated with prostatic autoimmune lesions, recognized distinct non-overlapping MHC-class-II-restricted peptides derived from the same prostate-specific protein. Notably, this protein is frequently targeted by autoantibodies in experimental models of prostatic autoimmunity. On the basis of these findings, we propose a model in which Treg cell responses at peripheral sites converge on those self-proteins that are most susceptible to autoimmune attack, and we suggest that this link could be exploited as a generalizable strategy for identifying the Treg cell antigens relevant to human autoimmunity.


Asunto(s)
Autoantígenos/metabolismo , Epítopos de Linfocito T/metabolismo , Neoplasias de la Próstata/inmunología , Linfocitos T Reguladores/inmunología , Timo/fisiología , Animales , Autoanticuerpos/metabolismo , Autoantígenos/genética , Autoantígenos/inmunología , Diferenciación Celular , Células Clonales , Mapeo Epitopo , Factores de Transcripción Forkhead/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Activación de Linfocitos , Masculino , Ratones
2.
Proc Natl Acad Sci U S A ; 114(35): E7311-E7320, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28807997

RESUMEN

Human Vγ9Vδ2 T cells respond to microbial infections as well as certain types of tumors. The key initiators of Vγ9Vδ2 activation are small, pyrophosphate-containing molecules called phosphoantigens (pAgs) that are present in infected cells or accumulate intracellularly in certain tumor cells. Recent studies demonstrate that initiation of the Vγ9Vδ2 T cell response begins with sensing of pAg via the intracellular domain of the butyrophilin 3A1 (BTN3A1) molecule. However, it is unknown how downstream events can ultimately lead to T cell activation. Here, using NMR spectrometry and molecular dynamics (MD) simulations, we characterize a global conformational change in the B30.2 intracellular domain of BTN3A1 induced by pAg binding. We also reveal by crystallography two distinct dimer interfaces in the BTN3A1 full-length intracellular domain, which are stable in MD simulations. These interfaces lie in close proximity to the pAg-binding pocket and contain clusters of residues that experience major changes of chemical environment upon pAg binding. This suggests that pAg binding disrupts a preexisting conformation of the BTN3A1 intracellular domain. Using a combination of biochemical, structural, and cellular approaches we demonstrate that the extracellular domains of BTN3A1 adopt a V-shaped conformation at rest, and that locking them in this resting conformation without perturbing their membrane reorganization properties diminishes pAg-induced T cell activation. Based on these results, we propose a model in which a conformational change in BTN3A1 is a key event of pAg sensing that ultimately leads to T cell activation.


Asunto(s)
Antígenos CD/fisiología , Butirofilinas/fisiología , Linfocitos Intraepiteliales/efectos de los fármacos , Antígenos/inmunología , Antígenos CD/química , Antígenos CD/metabolismo , Butirofilinas/química , Cristalografía por Rayos X , Células HEK293 , Humanos , Linfocitos Intraepiteliales/fisiología , Activación de Linfocitos/inmunología , Activación de Linfocitos/fisiología , Espectroscopía de Resonancia Magnética/métodos , Fosforilación , Unión Proteica , Conformación Proteica , Dominios Proteicos , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Relación Estructura-Actividad , Linfocitos T/inmunología
3.
eNeuro ; 11(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38233143

RESUMEN

The Drosophila Dpr and DIP proteins belong to the immunoglobulin superfamily of cell surface proteins (CSPs). Their hetero- and homophilic interactions have been implicated in a variety of neuronal functions, including synaptic connectivity, cell survival, and axon fasciculation. However, the signaling pathways underlying these diverse functions are unknown. To gain insight into Dpr-DIP signaling, we sought to examine how these CSPs are associated with the membrane. Specifically, we asked whether Dprs and DIPs are integral membrane proteins or membrane anchored through the addition of glycosylphosphatidylinositol (GPI) linkage. We demonstrate that most Dprs and DIPs are GPI anchored to the membrane of insect cells and validate these findings for some family members in vivo using Drosophila larvae, where GPI anchor cleavage results in loss of surface labeling. Additionally, we show that GPI cleavage abrogates aggregation of insect cells expressing cognate Dpr-DIP partners. To test if the GPI anchor affects Dpr and DIP localization, we replaced it with a transmembrane domain and observed perturbation of subcellular localization on motor neurons and muscles. These data suggest that membrane anchoring of Dprs and DIPs through GPI linkage is required for localization and that Dpr-DIP intracellular signaling likely requires transmembrane coreceptors.


Asunto(s)
Proteínas de Drosophila , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Drosophila , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neuronas Motoras/metabolismo
4.
bioRxiv ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39026773

RESUMEN

Multicellularity was accompanied by the emergence of new classes of cell surface and secreted proteins. The nematode C. elegans is a favorable model to study cell surface interactomes, given its well-defined and stereotyped cell types and intercellular contacts. Here we report our C. elegans extracellular interactome dataset, the largest yet for an invertebrate. Most of these interactions were unknown, despite recent datasets for flies and humans, as our collection contains a larger selection of protein families. We uncover new interactions for all four major axon guidance pathways, including ectodomain interactions between three of the pathways. We demonstrate that a protein family known to maintain axon locations are secreted receptors for insulins. We reveal novel interactions of cystine-knot proteins with putative signaling receptors, which may extend the study of neurotrophins and growth-factor-mediated functions to nematodes. Finally, our dataset provides insights into human disease mechanisms and how extracellular interactions may help establish connectomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA