Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 10(4): e26704, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38434044

RESUMEN

This work investigates the effect of varying the knitting structure and stitch length (SL) on various thermo-physiological and ergonomic comfort properties of the occupational graduated compression socks. Thermo-physiological comfort, ergonomic comfort and dimensional stability of theses stockings were analysed in a comparative manner. Obtained results were evaluated statistically using the technique of analysis of variance (ANOVA). A Fisher's multiple comparison test was commissioned to analyze the relationship between the alteration of stitch length (SL) on various utility functions and properties desired in the occupational compression socks. In order to examine whether the difference of stitch length is significant, p values were determined. Further the influence of knitting structures e.g., plain, 2 × 2 Rib and 1 × 3 Rib was analysed on the selected properties. The interactive effect of both stitch length (SL) and knitting structure was studied using statistical techniques. It was concluded that knitting structure has a stronger impact on thermo-physiological and ergonomic comfort properties. Results showed a significant variation in thermo-physiological and ergonomic comfort by altering stitch length by means of the statistical analysis. An innovative approach for the manufacturers has been developed for optimizing performance in compression stockings. The construction of the compression socks can thus be optimized in terms of constructional parameters to provide optimum comfort to the users.

2.
Materials (Basel) ; 17(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38255580

RESUMEN

Limited efficiency, lower durability, moisture absorbance, and pest/fungal/bacterial interaction/growth are the major issues relating to porous nonwovens used for acoustic and thermal insulation in buildings. This research investigated porous nonwoven textiles composed of recycled cotton waste (CW) fibers, with a specific emphasis on the above-mentioned problems using the treatment of silicon coating and formation of nanofibers via facile-solution processing. The findings revealed that the use of an economic and eco-friendly superhydrophobic (contact angle higher than 150°) modification of porous nonwovens with silicon nanofibers significantly enhanced their intrinsic characteristics. Notable improvements in their compactness/density and a substantial change in micro porosity were observed after a nanofiber network was formed on the nonwoven material. This optimized sample exhibited a superior performance in terms of stiffness, surpassing the untreated samples by 25-60%. Additionally, an significant enhancement in tear strength was observed, surpassing the untreated samples with an impressive margin of 70-90%. Moreover, the nanofibrous network of silicon fibers on cotton waste (CW) showed significant augmentation in heat resistance ranging from 7% to 24% and remarkable sound absorption capabilities. In terms of sound absorption, the samples exhibited a performance comparable to the commercial standard material and outperformed the untreated samples by 20% to 35%. Enhancing the micro-roughness of fabric via silicon nanofibers induced an efficient resistance to water absorption and led to the development of inherent self-cleaning characteristics. The antibacterial capabilities observed in the optimized sample were due to its superhydrophobic nature. These characteristics suggest that the proposed nano fiber-treated nonwoven fabric is ideal for multifunctional applications, having features like enhanced moisture resistance, pest resistance, thermal insulation, and sound absorption which are essential for wall covers in housing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA