Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Parasite Immunol ; 46(4): e13027, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38587985

RESUMEN

Malaria in pregnancy has severe consequences for the mother and foetus. Antibody response to specific malaria vaccine candidates (MVC) has been associated with a decreased risk of clinical malaria and its outcomes. We studied Plasmodium falciparum (Pf) and Schistosoma haematobium (Sh) infections and factors that could influence antibody responses to MVC in pregnant women. A total of 337 pregnant women receiving antenatal care (ANC) and 139 for delivery participated in this study. Pf infection was detected by qPCR and Sh infection using urine filtration method. Antibody levels against CSP, AMA-1, GLURP-R0, VAR2CSA and Pfs48/45 MVC were quantified by ELISA. Multivariable linear regression models identified factors associated with the modulation of antibody responses. The prevalence of Pf and Sh infections was 27% and 4% at ANC and 7% and 4% at delivery. Pf infection, residing in Adidome and multigravidae were positively associated with specific IgG response to CSP, AMA-1, GLURP-R0 and VAR2CSA. ITN use and IPTp were negatively associated with specific IgG response to GLURP-R0 and Pfs48/45. There was no association between Sh infection and antibody response to MVC at ANC or delivery. Pf infections in pregnant women were positively associated with antibody response to CSP, GLURP-R0 and AMA-1. Antibody response to GLURP-R0 and Pfs48/45 was low for IPTp and ITN users. This could indicate a lower exposure to Pf infection and low malaria prevalence observed at delivery.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Esquistosomiasis Urinaria , Animales , Humanos , Femenino , Embarazo , Plasmodium falciparum , Schistosoma haematobium , Formación de Anticuerpos , Mujeres Embarazadas , Antígenos de Protozoos , Anticuerpos Antiprotozoarios , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malaria Falciparum/complicaciones , Esquistosomiasis Urinaria/epidemiología , Esquistosomiasis Urinaria/prevención & control , Esquistosomiasis Urinaria/complicaciones , Inmunoglobulina G
2.
Malar J ; 13: 333, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25156105

RESUMEN

BACKGROUND: Cytoadherence of Plasmodium falciparum-infected erythrocytes (IEs) in deep microvasculature endothelia plays a major role in the pathogenesis of cerebral malaria (CM). This biological process is thought to be mediated by P. falciparum erythrocyte membrane protein-1 (PfEMP-1) and human receptors such as CD36 and ICAM-1. The relationship between the expression of PfEMP-1 variants and cytoadherence phenotype in the pathology of malaria is not well established. METHODS: Cytoadherence phenotypes of IEs to CD36, ICAM-1, CSPG and the transcription patterns of A, B, var2csa, var3, var gene groups and domain cassettes DC8 and DC13 were assessed in parasites from children with CM and uncomplicated malaria (UM) to determine if cytoadherence is related to a specific transcription profile of pfemp-1 variants. RESULTS: Parasites from CM patients bind significantly more to CD36 than those from UM patients, but no difference was observed in their binding ability to ICAM-1 and CSPG. CM isolates highly transcribed groups A, B, var2csa, var3, DC8 and DC13 compared to UM parasites. The high transcription levels of var genes belonging to group B positively correlated with increased binding level to CD36. CONCLUSION: CM isolates bind significantly more to CD36 than to ICAM-1, which was correlated with high transcription level of group B var genes, supporting their implication in malaria pathogenesis.


Asunto(s)
Adhesión Celular , Eritrocitos/fisiología , Eritrocitos/parasitología , Malaria Cerebral/patología , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/biosíntesis , Antígenos CD36/metabolismo , Niño , Eritrocitos/química , Expresión Génica , Genotipo , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Malaria Cerebral/parasitología , Proteínas Protozoarias/genética , Receptores de Superficie Celular/metabolismo
3.
Infect Dis Poverty ; 13(1): 26, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486340

RESUMEN

We look at the link between climate change and vector-borne diseases in low- and middle-income countries in Africa. The large endemicity and escalating threat of diseases such as malaria and arboviral diseases, intensified by climate change, disproportionately affects vulnerable communities globally. We highlight the urgency of prioritizing research and development, advocating for robust scientific inquiry to promote adaptation strategies, and the vital role that the next generation of African research leaders will play in addressing these challenges. Despite significant challenges such as funding shortages within countries, various pan-African-oriented funding bodies such as the African Academy of Sciences, the Africa Research Excellence Fund, the Wellcome Trust, the U.S. National Institutes of Health, and the Bill and Melinda Gates Foundation as well as initiatives such as the African Research Initiative for Scientific Excellence and the Pan-African Mosquito Control Association, have empowered (or are empowering) these researchers by supporting capacity building activities, including continental and global networking, skill development, mentoring, and African-led research. This article underscores the urgency of increased national investment in research, proposing the establishment of research government agencies to drive evidence-based interventions. Collaboration between governments and scientific communities, sustained by pan-African funding bodies, is crucial. Through these efforts, African nations are likely to enhance the resilience and adaptive capacity of their systems and communities by navigating these challenges effectively, fostering scientific excellence and implementing transformative solutions against climate-sensitive vector-borne diseases.


Asunto(s)
Malaria , Humanos , África/epidemiología , Malaria/epidemiología , Malaria/prevención & control , Investigadores , Cambio Climático , Creación de Capacidad
4.
J Parasitol Res ; 2023: 7500676, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808169

RESUMEN

Background: Anaemia is common in sub-Saharan Africa, and parasitic infections could worsen its burden during pregnancy. Moreover, women become susceptible to malaria during pregnancy. We investigated Plasmodium falciparum (P. falciparum) and Schistosoma haematobium (S. haematobium) infections and determined their association with anaemia during pregnancy. Methods: A cross-sectional study involving 707 pregnant women attending antenatal care visits (ANC) and 446 at delivery was conducted in Battor and Adidome hospitals. Pregnant women were screened by microscopy and qPCR for P. falciparum and S. haematobium infections. Haemoglobin (Hb) levels were determined, and most participants received intermittent preventive treatment during pregnancy (IPTp) during ANC till delivery. Regression analyses were performed for associations between parasite infection and anaemia. Results: P. falciparum microscopy prevalence at ANC and delivery was 8% and 2%, respectively, and by PCR 24% at ANC and 12% at delivery. Anaemia prevalence at ANC was 52% and 49% at delivery. There was an increased risk of anaemia with P. falciparum infection (aOR = 1.92; p = 0.04). IPTp (p = 0.003) and age (p = 0.004) were associated with increased Hb levels at delivery. S. haematobium prevalence by microscopy was 4% at ANC and 2% at delivery. No significant correlation between S. haematobium and Hb levels was observed (coef. = -0.62 g/dl; p = 0.07). Conclusion: High anaemia prevalence was observed during pregnancy, and P. falciparum infection was associated with anaemia at ANC. Low S. haematobium prevalence could be attributed to previous praziquantel treatment during mass drug administration. Routine diagnosis and treatment of S. haematobium infections in endemic areas could be initiated to reduce schistosomiasis during pregnancy.

5.
Sci Rep ; 12(1): 12994, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906450

RESUMEN

Members of the highly polymorphic Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family expressed on the surface of infected erythrocytes (IEs) are important virulence factors, which mediate vascular adhesion of IEs via endothelial host receptors and are targets of naturally acquired immunity. The PfEMP1 family can be divided into clinically relevant subgroups, of which some bind intercellular adhesion molecule 1 (ICAM-1). While the acquisition of IgG specific for ICAM-1-binding DBLß domains is known to differ between PfEMP1 groups, its ability to induce antibody-dependent cellular phagocytosis (ADCP) is unclear. We therefore measured plasma levels of DBLß-specific IgG, the ability of such IgG to inhibit PfEMP1-binding to ICAM-1, and its ability to opsonize IEs for ADCP, using plasma from Beninese children with severe (SM) or uncomplicated malaria (UM). IgG specific for DBLß from group A and B ICAM-1-binding PfEMP1 were dominated by IgG1 and IgG3, and were similar in SM and UM. However, levels of plasma IgG inhibiting ICAM-1-binding of group A DBLß of PFD1235w was significantly higher in children with UM than SM, and acute UM plasma induced a higher ADCP response than acute SM plasma.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Benin , Niño , Eritrocitos/metabolismo , Humanos , Inmunoglobulina G , Molécula 1 de Adhesión Intercelular/metabolismo , Fagocitosis , Proteínas Protozoarias
6.
Exp Biol Med (Maywood) ; 246(8): 960-970, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33325750

RESUMEN

The confirmed case fatality rate for the coronavirus disease 2019 (COVID-19) in Ghana has dropped from a peak of 2% in March to be consistently below 1% since May 2020. Globally, case fatality rates have been linked to the strains/clades of circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within a specific country. Here we present 46 whole genomes of SARS-CoV-2 circulating in Ghana, from two separate sequencing batches: 15 isolates from the early epidemic (March 12-April 1 2020) and 31 from later time-points ( 25-27 May 2020). Sequencing was carried out on an Illumina MiSeq system following an amplicon-based enrichment for SARS-CoV-2 cDNA. After genome assembly and quality control processes, phylogenetic analysis showed that the first batch of 15 genomes clustered into five clades: 19A, 19B, 20A, 20B, and 20C, whereas the second batch of 31 genomes clustered to only three clades 19B, 20A, and 20B. The imported cases (6/46) mapped to circulating viruses in their countries of origin, namely, India, Hungary, Norway, the United Kingdom, and the United States of America. All genomes mapped to the original Wuhan strain with high similarity (99.5-99.8%). All imported strains mapped to the European superclade A, whereas 5/9 locally infected individuals harbored the B4 clade, from the East Asian superclade B. Ghana appears to have 19B and 20B as the two largest circulating clades based on our sequence analyses. In line with global reports, the D614G linked viruses seem to be predominating. Comparison of Ghanaian SARS-CoV-2 genomes with global genomes indicates that Ghanaian strains have not diverged significantly from circulating strains commonly imported into Africa. The low level of diversity in our genomes may indicate lower levels of transmission, even for D614G viruses, which is consistent with the relatively low levels of infection reported in Ghana.


Asunto(s)
Evolución Molecular , Genoma Viral , Filogenia , SARS-CoV-2/genética , COVID-19/epidemiología , Ghana/epidemiología , Humanos , SARS-CoV-2/patogenicidad
7.
PLoS Pathog ; 2(11): e124, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17112315

RESUMEN

Pregnancy-associated malaria is a major health problem, which mainly affects primigravidae living in malaria endemic areas. The syndrome is precipitated by accumulation of infected erythrocytes in placental tissue through an interaction between chondroitin sulphate A on syncytiotrophoblasts and a parasite-encoded protein on the surface of infected erythrocytes, believed to be VAR2CSA. VAR2CSA is a polymorphic protein of approximately 3,000 amino acids forming six Duffy-binding-like (DBL) domains. For vaccine development it is important to define the antigenic targets for protective antibodies and to characterize the consequences of sequence variation. In this study, we used a combination of in silico tools, peptide arrays, and structural modeling to show that sequence variation mainly occurs in regions under strong diversifying selection, predicted to form flexible loops. These regions are the main targets of naturally acquired immunoglobulin gamma and accessible for antibodies reacting with native VAR2CSA on infected erythrocytes. Interestingly, surface reactive anti-VAR2CSA antibodies also target a conserved DBL3X region predicted to form an alpha-helix. Finally, we could identify DBL3X sequence motifs that were more likely to occur in parasites isolated from primi- and multigravidae, respectively. These findings strengthen the vaccine candidacy of VAR2CSA and will be important for choosing epitopes and variants of DBL3X to be included in a vaccine protecting women against pregnancy-associated malaria.


Asunto(s)
Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/metabolismo , Mapeo Epitopo , Placenta/parasitología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo , Receptores de Superficie Celular/inmunología , Receptores de Superficie Celular/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Anticuerpos Antiprotozoarios/inmunología , Linfocitos B/inmunología , Unión Competitiva , Sulfatos de Condroitina/metabolismo , Femenino , Variación Genética , Humanos , Malaria Falciparum/fisiopatología , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Paridad , Embarazo , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Recombinación Genética
8.
Malar J ; 7: 104, 2008 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-18534039

RESUMEN

BACKGROUND: Pregnancy malaria is caused by Plasmodium falciparum-infected erythrocytes binding the placental receptor chondroitin sulfate A (CSA). This results in accumulation of parasites in the placenta with severe clinical consequences for the mother and her unborn child. Women become resistant to placental malaria as antibodies are acquired which specifically target the surface of infected erythrocytes binding in the placenta. VAR2CSA is most likely the parasite-encoded protein which mediates binding to the placental receptor CSA. Several domains have been shown to bind CSA in vitro; and it is apparent that a VAR2CSA-based vaccine cannot accommodate all the CSA binding domains and serovariants. It is thus of high priority to define minimal ligand binding regions throughout the VAR2CSA molecule. METHODS: To define minimal CSA-binding regions/peptides of VAR2CSA, a phage display library based on the entire var2csa coding region was constructed. This library was screened on immobilized CSA and cells expressing CSA resulting in a limited number of CSA-binding phages. Antibodies against these peptides were affinity purified and tested for reactivity against CSA-binding infected erythrocytes. RESULTS: The most frequently identified phages expressed peptides residing in the parts of VAR2CSA previously defined as CSA binding. In addition, most of the binding regions mapped to surface-exposed parts of VAR2CSA. The binding of a DBL2X peptide to CSA was confirmed with a synthetic peptide. Antibodies against a CSA-binding DBL2X peptide reacted with the surface of infected erythrocytes indicating that this epitope is accessible for antibodies on native VAR2CSA on infected erythrocytes. CONCLUSION: Short continuous regions of VAR2CSA with affinity for multiple types of CSA were defined. A number of these regions localize to CSA-binding domains and to surface-exposed regions within these domains and a synthetic peptide corresponding to a peptide sequence in DBL2 was shown to bind to CSA and not to CSC. It is likely that some of these epitopes are involved in native parasite CSA adhesion. However, antibodies directed against single epitopes did not inhibit parasite adhesion. This study supports phage display as a technique to identify CSA-binding regions of large proteins such as VAR2CSA.


Asunto(s)
Antígenos de Protozoos/metabolismo , Sulfatos de Condroitina/metabolismo , Plasmodium falciparum/fisiología , Animales , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/química , Antígenos de Protozoos/genética , Sitios de Unión , Línea Celular , Humanos , Biblioteca de Péptidos , Unión Proteica , Estructura Terciaria de Proteína
9.
Cell Host Microbe ; 21(3): 403-414, 2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-28279348

RESUMEN

Cerebral malaria is a deadly outcome of infection by Plasmodium falciparum, occurring when parasite-infected erythrocytes accumulate in the brain. These erythrocytes display parasite proteins of the PfEMP1 family that bind various endothelial receptors. Despite the importance of cerebral malaria, a binding phenotype linked to its symptoms has not been identified. Here, we used structural biology to determine how a group of PfEMP1 proteins interacts with intercellular adhesion molecule 1 (ICAM-1), allowing us to predict binders from a specific sequence motif alone. Analysis of multiple Plasmodium falciparum genomes showed that ICAM-1-binding PfEMP1s also interact with endothelial protein C receptor (EPCR), allowing infected erythrocytes to synergistically bind both receptors. Expression of these PfEMP1s, predicted to bind both ICAM-1 and EPCR, is associated with increased risk of developing cerebral malaria. This study therefore reveals an important PfEMP1-binding phenotype that could be targeted as part of a strategy to prevent cerebral malaria.


Asunto(s)
Adhesión Celular , Malaria Cerebral/parasitología , Malaria Falciparum/parasitología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/metabolismo , Factores de Virulencia/metabolismo , Antígenos CD/metabolismo , Biología Computacional , Cristalografía por Rayos X , Receptor de Proteína C Endotelial , Genoma de Protozoos , Molécula 1 de Adhesión Intercelular/metabolismo , Plasmodium falciparum/fisiología , Unión Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Receptores de Superficie Celular/metabolismo , Dispersión del Ángulo Pequeño , Análisis de Secuencia de ADN , Resonancia por Plasmón de Superficie , Factores de Virulencia/química , Factores de Virulencia/genética
10.
Parasite ; 23: 28, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27443837

RESUMEN

AIM: In Benin, artemisinin-based combination therapy (ACT) has been recommended as the first-line treatment for uncomplicated Plasmodium falciparum malaria since 2004. The emergence in Southeast Asia of parasites that are resistant to artemisinins poses a serious threat to global control of this disease. The presence of artemisinin resistance genotypes in parasite populations in Benin is currently unknown. The present study investigated the prevalence of relevant K13-propeller gene polymorphisms in parasite isolates from the north-western region of Benin. METHOD: Plasmodium falciparum isolates were collected from children with a confirmed diagnosis of malaria aged 6 months to 5 years in two towns, Cobly and Djougou, in the north-western part of Benin. The study was conducted during the rainy season from July to November 2014 in local health facilities. The K13-propeller gene was amplified in parasite isolates using nested PCR and subsequently sequenced. RESULTS: A total of 108 children were recruited into the study. The efficiency of amplification reactions was 72% (78/108). The propeller domain of the K13 gene was successfully sequenced in 78 P. falciparum isolates; all of them were wild type with no polymorphisms detectable. CONCLUSION: The absence of mutations in the K13 gene indicates that P. falciparum parasite populations in the study area are still fully susceptible to artemisinins.


Asunto(s)
Antiinfecciosos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Etanolaminas/uso terapéutico , Fluorenos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Antiinfecciosos/uso terapéutico , Combinación Arteméter y Lumefantrina , Benin , Preescolar , ADN Protozoario/química , ADN Protozoario/genética , ADN Protozoario/aislamiento & purificación , Combinación de Medicamentos , Resistencia a Medicamentos , Humanos , Lactante , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Polimorfismo Genético , Alineación de Secuencia
11.
J Acquir Immune Defic Syndr ; 65(2): 198-206, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24220287

RESUMEN

BACKGROUND: Malaria during pregnancy has serious consequences that are worsened by HIV infection. Malaria preventive measures for HIV-infected pregnant women include cotrimoxazole (CTX) prophylaxis given to prevent HIV-related opportunistic infections and also protective against malaria, or intermittent preventive treatment (IPTp) with an antimalarial drug. Here, we present the first study evaluating CTX efficacy versus mefloquine (MQ)-IPTp, alone and in combination, in HIV-infected pregnant women. METHODS: We conducted 2 randomized, open-label, noninferiority trials in Benin. In the CTX-mandatory trial, HIV-infected women with CD4 counts of <350 per cubic millimeter received CTX either alone or with MQ-IPTp (N = 292). In the CTX-not-mandatory trial (CD4 count >350/mm), CTX was compared with MQ-IPTp (N = 140). In both the trials, the primary end point was microscopic placental parasitemia. RESULTS: At delivery, 1 woman in each CTX-alone treatment group exhibited placental parasitemia, versus no women in the groups receiving MQ. CTX alone demonstrated noninferiority in the CTX-mandatory trial. However, polymerase chain reaction-detected placental parasitemia was markedly reduced in the CTX + MQ group compared with CTX alone (0/105 vs. 5/103, P = 0.03). Because of insufficient recruitment in the CTX-not-mandatory trial, noninferiority could not be conclusively assessed. Dizziness and vomiting of moderate intensity were reported by 34%-37% of women receiving MQ in both the trials, versus 0%-3% in CTX groups (P < 0.0001). No serious adverse events related to these drugs were found. CONCLUSIONS: CTX alone provided adequate protection against malaria in HIV-infected pregnant women, although MQ-IPTp showed higher efficacy against placental infection. Although more frequently associated with dizziness and vomiting, MQ-IPTp may be an effective alternative given concerns about parasite resistance to CTX.


Asunto(s)
Antimaláricos/administración & dosificación , Quimioprevención/métodos , Infecciones por VIH/complicaciones , Malaria/prevención & control , Mefloquina/administración & dosificación , Complicaciones Parasitarias del Embarazo/prevención & control , Combinación Trimetoprim y Sulfametoxazol/administración & dosificación , Adulto , Antimaláricos/efectos adversos , Benin , Quimioprevención/efectos adversos , Mareo/inducido químicamente , Mareo/epidemiología , Quimioterapia Combinada/efectos adversos , Quimioterapia Combinada/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Femenino , Humanos , Lactante , Recién Nacido , Mefloquina/efectos adversos , Parasitemia/prevención & control , Embarazo , Resultado del Tratamiento , Combinación Trimetoprim y Sulfametoxazol/efectos adversos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA