Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35408925

RESUMEN

In cattle, phenobarbital (PB) upregulates target drug-metabolizing enzyme (DME) mRNA levels. However, few data about PB's post-transcriptional effects are actually available. This work provides the first, and an almost complete, characterization of PB-dependent changes in DME catalytic activities in bovine liver using common probe substrates and confirmatory immunoblotting investigations. As expected, PB increased the total cytochrome P450 (CYP) content and the extent of metyrapone binding; moreover, an augmentation of protein amounts and related enzyme activities was observed for known PB targets such as CYP2B, 2C, and 3A, but also CYP2E1. However, contradictory results were obtained for CYP1A, while a decreased catalytic activity was observed for flavin-containing monooxygenases 1 and 3. The barbiturate had no effect on the chosen hydrolytic and conjugative DMEs. For the first time, we also measured the 26S proteasome activity, and the increase observed in PB-treated cattle would suggest this post-translational event might contribute to cattle DME regulation. Overall, this study increased the knowledge of cattle hepatic drug metabolism, and further confirmed the presence of species differences in DME expression and activity between cattle, humans, and rodents. This reinforced the need for an extensive characterization and understanding of comparative molecular mechanisms involved in expression, regulation, and function of DMEs.


Asunto(s)
Fenobarbital , Xenobióticos , Animales , Bovinos , Sistema Enzimático del Citocromo P-450/metabolismo , Inducción Enzimática , Hígado/metabolismo , Microsomas Hepáticos/metabolismo , Fenobarbital/farmacología , Xenobióticos/metabolismo
2.
BMC Vet Res ; 15(1): 336, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31533706

RESUMEN

BACKGROUND: The recognition of illegal administration of synthetic corticosteroids in animal husbandry has been recently challenged by the case of prednisolone, whose occasional presence in the urine of bovines under strong stressful conditions was attributed to endogenous biosynthesis, not to exogenous administration. The study of the natural stress sources possibly inducing endogenous prednisolone production represents a stimulating investigation subject. The biochemical effects of transportation and slaughtering were verified in untreated cows by studying the possible occurrence of prednisolone and its metabolites in urine, liver and adrenal glands, and the cortisol/cortisone quantification. RESULTS: Cortisol, cortisone, prednisolone and its metabolites were measured in urine, collected at farm under natural micturition and then at the slaughterhouse. The study was performed on 15 untreated cows reared in different farms at the end of their productive cycle. 2-3 days after the first urine collection, the animals were transported by trucks to the abattoir, slaughtered, and subjected to a second urine sampling from the bladder. Specimens of liver and adrenal gland were also collected and analysed by means of a liquid chromatography-tandem mass spectrometry (LC-MS/MS) validated method. The stressful conditions of transportation and slaughtering proved to increase considerably the urinary levels of cortisol and cortisone as compared to those collected at farm. Prednisolone was detected in the urine collected at the slaughterhouse of two cows only, at a concentration level (≈0.6 µg L- 1) largely below the official cut off (5.0 µg L- 1) established to avoid false non-compliances. These two animals exhibited the highest urinary cortisol levels of the series. Prednisolone and prednisone were also detected in the adrenal glands of a different cow. Prednisolone metabolites were not detected in any urine, liver, and adrenal gland sample. CONCLUSION: Within the constraints of the condition adopted, this study confirms the sporadic presence of prednisolone traces (2 samples out of 15) and the consistently increased concentration of cortisone and cortisol in the urines collected from cows subjected to truck transportation and subsequent slaughtering. No prednisolone metabolites were detected in any liver and adrenal gland samples, nor in urine specimens, unlike what was previously reported for cows artificially stressed by pharmacological treatment.


Asunto(s)
Mataderos , Prednisolona/orina , Transportes , Glándulas Suprarrenales/química , Animales , Bovinos , Cortisona/orina , Femenino , Hidrocortisona/orina , Hígado/química , Prednisolona/metabolismo , Estrés Fisiológico/fisiología
3.
BMC Vet Res ; 10: 237, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25267433

RESUMEN

BACKGROUND: Prednisolone was one of the first glucocorticoids to be synthesised, but it is still widely applied to cattle. Illegal uses of prednisolone include its uses for masking a number of diseases before animal sale and, at lower dosages for extended periods of time, for the improvement of feed efficiency and carcass characteristics. Since occasional presence of prednisolone has been detected at trace level in urine samples from untreated cattle, the Italian Ministry of Health introduced a provisional limit of 5 ng/mL to avoid false non-compliances. However, this limit proved ineffective in disclosing prednisolone misuse as a growth-promoter. In the present study, prednisolone acetate was administered to finishing bulls and cows according to a therapeutic protocol (2 × 0.4-0.5 mg/kg bw i.m. at 48 h interval) to further verify the practical impact of this cut-off limit and develop sound strategies to distinguish between exogenous administration and endogenous production. Urinary prednisolone, prednisone, 20ß-dihydroprednisolone, 20α-dihydroprednisolone, 20ß-dihydroprednisone, 6ß-hydroxyprednisolone, cortisol, and cortisone were determined using a validated LC/MS-MS method. RESULTS: The urinary excretion profile showed the simultaneous presence of prednisolone, 20ß-dihydroprednisolone, and prednisone, the latter at lower concentrations, up to 33 days after the first dosing. Higher analyte levels were detected in bulls even after correction for dilution in the urine. Prednisolone concentrations below 5 ng/ml were determined in half of the samples collected at 19 days, and in all the samples obtained 26 and 33 days after the first administration. No measurable concentrations of prednisolone or its metabolites were found in the samples collected before the treatment, while cortisol and cortisone levels lower than the respective LOQs were observed upon treatment. CONCLUSIONS: The present study confirms the criticism of the coarse quantitative approach currently adopted to ascertain illegal prednisolone administration in cattle. As previously shown for growth-promoting treatments of meat cattle, the simultaneous determination of urinary prednisolone, prednisone, 20ß-dihydroprednisolone, along with cortisol and cortisone, may represent a more reliable approach to confirm the exogenous origin of prednisolone. Such a strategy would facilitate unequivocal detection of animals treated with prednisolone acetate using a therapeutical protocol, even 3 to 4 weeks after the treatment.


Asunto(s)
Corticoesteroides/orina , Bovinos/orina , Prednisolona/análogos & derivados , Prednisolona/orina , Corticoesteroides/administración & dosificación , Corticoesteroides/metabolismo , Corticoesteroides/farmacocinética , Corticoesteroides/uso terapéutico , Animales , Bovinos/metabolismo , Femenino , Masculino , Prednisolona/administración & dosificación , Prednisolona/metabolismo , Prednisolona/farmacocinética , Prednisolona/uso terapéutico
4.
Animals (Basel) ; 14(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473128

RESUMEN

Sorghum plants naturally produce dhurrin, a cyanogenic glycoside that may be hydrolysed to cyanide, resulting in often-lethal toxicoses. Ruminants are particularly sensitive to cyanogenic glycosides due to the active role of rumen microbiota in dhurrin hydrolysis. This work provides an overview of a poisoning outbreak that occurred in 5 farms in Northwest Italy in August 2022; a total of 66 cows died, and many others developed acute toxicosis after being fed on either cultivated (Sorghum bicolor) or wild Sorghum (Sorghum halepense). Clinical signs were recorded, and all cows received antidotal/supportive therapy. Dead animals were subjected to necropsy, and dhurrin content was determined in Sorghum specimens using an LC-MS/MS method. Rapid onset, severe respiratory distress, recumbency and convulsions were the main clinical features; bright red blood, a bitter almond smell and lung emphysema were consistently observed on necropsy. The combined i.v. and oral administration of sodium thiosulphate resulted in a rapid improvement of clinical signs. Dhurrin concentrations corresponding to cyanide levels higher than the tolerated threshold of 200 mg/kg were detected in sorghum specimens from 4 out of 5 involved farms; thereafter, such levels declined, reaching tolerable concentrations in September-October. Feeding cattle with wild or cultivated Sorghum as green fodder is a common practice in Northern Italy, especially in summer. However, care should be taken in case of adverse climatic conditions, such as severe drought and tropical temperatures (characterising summer 2022), which are reported to increase dhurrin synthesis and storage.

5.
EFSA J ; 22(7): e8950, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39086458

RESUMEN

Following a request from the European Commission, the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety and efficacy of liquid l-lysine base produced with a genetically modified strain of Corynebacterium glutamicum as a nutritional feed additive for all animal species. The l-lysine base liquid produced with C. glutamicum NRRL B-67535 and NRRL B-67439 is currently authorised as a nutritional additive for all animal species. The present application is aimed at modifying the current authorisation to include C. glutamicum NRRL B-68248 as a production strain. The new production strain qualifies for the qualified presumption of safety approach when used for production purposes. It was unambiguously identified as C. glutamicum and was shown not to harbour acquired antimicrobial resistance determinants for antibiotics of human and veterinary importance. All the introduced sequences or mutations were considered to be safe, and no viable cells or DNA of the NRRL B-68248 strain was detected in the final product. Therefore, the final product does not pose any safety concern associated with the production strain. l-Lysine base produced using C. glutamicum NRRL B-68248 does not represent a risk for the target species, the consumer or the environment. The additive was considered to be neither irritant to skin or the eyes, nor a dermal sensitiser. l-Lysine base produced with C. glutamicum NRRL B-68248 is considered to be an efficacious source of the essential amino acid l-lysine for non-ruminant animal species. For the supplemental l-lysine to be as efficacious in ruminants as in non-ruminant species, it would require protection against degradation in the rumen.

6.
EFSA J ; 22(8): e8951, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39119057

RESUMEN

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the assessment of the feed additive consisting of endo-1,4-beta-xylanase (produced with Trichoderma reesei MUCL 49755) and endo-1,3(4)-beta-glucanase (produced with T. reesei MUCL 49754) (AveMix® XG 10/AveMix® XG 10 L) for the renewal of its authorisation as zootechnical feed additive for pigs for fattening, minor porcine species for fattening and turkeys for fattening. The applicant declared a change in the carrier material used in AveMix® XG 10 from soybean meal to calcium carbonate + wheat flour or calcium carbonate + sepiolite. The applicant provided evidence that the additive Avemix® XG 10 with calcium carbonate + wheat flour and Avemix® XG 10 L comply with the conditions of the authorisation. The EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) noted that no data were submitted to support compliance of the formulation of Avemix® XG 10 with calcium carbonate + sepiolite with the conditions of the authorisation. The FEEDAP Panel concluded that both forms of the additive remain safe for pigs for fattening, minor porcine species for fattening and turkeys for fattening, consumers and the environment. Regarding the safety for the user, Avemix® XG 10 formulated with calcium carbonate + sepiolite and Avemix® XG 10 L are not irritant to skin and eyes. No conclusions on the irritation potential of Avemix® XG 10 formulated with calcium carbonate + wheat flour could be drawn. The additive in all its formulations is considered a respiratory and skin sensitiser. There was no need for assessing the efficacy of the additive in the context of the renewal of the authorisation.

7.
EFSA J ; 22(8): e8934, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39099618

RESUMEN

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the assessment of the application of renewal of Levilactobacillus brevis DSM 16680 as a technological feed additive (functional group: silage additives) for all animal species. The applicant has provided evidence that the additive currently on the market complies with the existing terms of the authorisation. The EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concluded that the additive remains safe for all animal species, consumers and the environment. Regarding user safety, the additive should be considered as an eye irritant and a skin and respiratory sensitiser. There is no need for assessing the efficacy of the additive in the context of the renewal of the authorisation.

8.
EFSA J ; 22(7): e8844, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957748

RESUMEN

The European Commission asked EFSA for a risk assessment on small organoarsenic species in food. For monomethylarsonic acid MMA(V), decreased body weight resulting from diarrhoea in rats was identified as the critical endpoint and a BMDL10 of 18.2 mg MMA(V)/kg body weight (bw) per day (equivalent to 9.7 mg As/kg bw per day) was calculated as a reference point (RP). For dimethylarsinic acid DMA(V), increased incidence in urinary bladder tumours in rats was identified as the critical endpoint. A BMDL10 of 1.1 mg DMA(V)/kg bw per day (equivalent to 0.6 mg As/kg bw per day) was calculated as an RP. For other small organoarsenic species, the toxicological data are insufficient to identify critical effects and RPs, and they could not be included in the risk assessment. For both MMA(V) and DMA(V), the toxicological database is incomplete and a margin of exposure (MOE) approach was applied for risk characterisation. The highest chronic dietary exposure to DMA(V) was estimated in 'Toddlers', with rice and fish meat as the main contributors across population groups. For MMA(V), the highest chronic dietary exposures were estimated for high consumers of fish meat and processed/preserved fish in 'Infants' and 'Elderly' age class, respectively. For MMA(V), an MOE of ≥ 500 was identified not to raise a health concern. For MMA(V), all MOEs were well above 500 for average and high consumers and thus do not raise a health concern. For DMA(V), an MOE of 10,000 was identified as of low health concern as it is genotoxic and carcinogenic, although the mechanisms of genotoxicity and its role in carcinogenicity of DMA(V) are not fully elucidated. For DMA(V), MOEs were below 10,000 in many cases across dietary surveys and age groups, in particular for some 95th percentile exposures. The Panel considers that this would raise a health concern.

9.
EFSA J ; 22(8): e8938, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39114323

RESUMEN

Sodium propionate is authorised containing at least 98.5% of sodium propionate. The applicants requested for the renewal of the authorisation of sodium propionate when used as a feed additive for all terrestrial animal species. The applicant has provided evidence that the additive in the market complies with the conditions of the authorisation. The Panel on Additives and Products or Substances used in Animal Feed (FEEDAP Panel) confirms that the use of sodium propionate under the current authorised conditions of use is safe for the target species, the consumers and the environment. Considering the user safety, the additive is corrosive to skin, eyes and respiratory tract, but is not a skin sensitiser. There is no need for assessing the efficacy of the additive in the context of the renewal of the authorisation.

10.
EFSA J ; 22(7): e8859, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39010865

RESUMEN

The European Commission asked EFSA to update its 2011 risk assessment on tetrabromobisphenol A (TBBPA) and five derivatives in food. Neurotoxicity and carcinogenicity were considered as the critical effects of TBBPA in rodent studies. The available evidence indicates that the carcinogenicity of TBBPA occurs via non-genotoxic mechanisms. Taking into account the new data, the CONTAM Panel considered it appropriate to set a tolerable daily intake (TDI). Based on decreased interest in social interaction in male mice, a lowest observed adverse effect level (LOAEL) of 0.2 mg/kg body weight (bw) per day was identified and selected as the reference point for the risk characterisation. Applying the default uncertainty factor of 100 for inter- and intraspecies variability, and a factor of 3 to extrapolate from the LOAEL to NOAEL, a TDI for TBBPA of 0.7 µg/kg bw per day was established. Around 2100 analytical results for TBBPA in food were used to estimate dietary exposure for the European population. The most important contributors to the chronic dietary LB exposure to TBBPA were fish and seafood, meat and meat products and milk and dairy products. The exposure estimates to TBBPA were all below the TDI, including those estimated for breastfed and formula-fed infants. Accounting for the uncertainties affecting the assessment, the CONTAM Panel concluded with 90%-95% certainty that the current dietary exposure to TBBPA does not raise a health concern for any of the population groups considered. There were insufficient data on the toxicity of any of the TBBPA derivatives to derive reference points, or to allow a comparison with TBBPA that would support assignment to an assessment group for the purposes of combined risk assessment.

11.
EFSA J ; 22(1): e8497, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38269035

RESUMEN

The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ­209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.

12.
EFSA J ; 22(1): e8496, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38264299

RESUMEN

The European Commission requested EFSA to provide an update of the 2012 Scientific Opinion of the Panel on Contaminants in the Food Chain (CONTAM) on the risks for animal health related to the presence of ergot alkaloids (EAs) in feed. EAs are produced by several fungi of the Claviceps and Epichloë genera. This Opinion focussed on the 14 EAs produced by C. purpurea (ergocristine, ergotamine, ergocornine, α- and ß-ergocryptine, ergometrine, ergosine and their corresponding 'inine' epimers). Effects observed with EAs from C. africana (mainly dihydroergosine) and Epichloë (ergovaline/-inine) were also evaluated. There is limited information on toxicokinetics in food and non-food producing animals. However, transfer from feed to food of animal origin is negligible. The major effects of EAs are related to vasoconstriction and are exaggerated during extreme temperatures. In addition, EAs cause a decrease in prolactin, resulting in a reduced milk production. Based on the sum of the EAs, the Panel considered the following as Reference Points (RPs) in complete feed for adverse animal health effects: for pigs and piglets 0.6 mg/kg, for chickens for fattening and hens 2.1 and 3.7 mg/kg, respectively, for ducks 0.2 mg/kg, bovines 0.1 mg/kg and sheep 0.3 mg/kg. A total of 19,023 analytical results on EAs (only from C. purpurea) in feed materials and compound feeds were available for the exposure assessment (1580 samples). Dietary exposure was assessed using two feeding scenarios (model diets and compound feeds). Risk characterisation was done for the animals for which an RP could be identified. The CONTAM Panel considers that, based on exposure from model diets, the presence of EAs in feed raises a health concern in piglets, pigs for fattening, sows and bovines, while for chickens for fattening, laying hens, ducks, ovines and caprines, the health concern related to EAs in feed is low.

13.
EFSA J ; 22(1): e8488, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38239496

RESUMEN

The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 µg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.

14.
EFSA J ; 22(3): e8640, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38476320

RESUMEN

EFSA was asked for a scientific opinion on the risks for animal and human health related to the presence of polychlorinated naphthalenes (PCNs) in feed and food. The assessment focused on hexaCNs due to very limited data on other PCN congeners. For hexaCNs in feed, 217 analytical results were used to estimate dietary exposures for food-producing and non-food-producing animals; however, a risk characterisation could not be performed because none of the toxicological studies allowed identification of reference points. The oral repeated dose toxicity studies performed in rats with a hexaCN mixture containing all 10 hexaCNs indicated that the critical target was the haematological system. A BMDL20 of 0.05 mg/kg body weight (bw) per day was identified for a considerable decrease in the platelet count. For hexaCNs in food, 2317 analytical results were used to estimate dietary exposures across dietary surveys and age groups. The highest exposure ranged from 0.91 to 29.8 pg/kg bw per day in general population and from 220 to 559 pg/kg bw per day for breast-fed infants with the highest consumption of breast milk. Applying a margin of exposure (MOE) approach, the estimated MOEs for the high dietary exposures ranged from 1,700,000 to 55,000,000 for the general population and from 90,000 to 230,000 for breast-fed infants with the highest consumption of breast milk. These MOEs are far above the minimum MOE of 2000 that does not raise a health concern. Taking account of the uncertainties affecting the assessment, the Panel concluded with at least 99% certainty that dietary exposure to hexaCNs does not raise a health concern for any of the population groups considered. Due to major limitations in the available data, no assessment was possible for genotoxic effects or for health risks of PCNs other than hexaCNs.

15.
EFSA J ; 22(1): e8528, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38205503

RESUMEN

This statement provides scientific guidance on the information needed to support the risk assessment of the detoxification processes applied to products intended for animal feed in line with the acceptability criteria of the Commission Regulation (EU) 2015/786.

16.
Toxins (Basel) ; 15(12)2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38133191

RESUMEN

The most frequent adverse effects of AFB1 in chicken are low performance, the depression of the immune system, and a reduced quality of both eggs and meat, leading to economic losses. Since oxidative stress plays a major role in AFB1 toxicity, natural products are increasingly being used as an alternative to mineral binders to tackle AFB1 toxicosis in farm animals. In this study, an in vivo trial was performed by exposing broilers for 10 days to AFB1 at dietary concentrations approaching the maximum limits set by the EU (0.02 mg/kg feed) in the presence or absence of turmeric powder (TP) (included in the feed at 400 mg/kg). The aims were to evaluate (i) the effects of AFB1 on lipid peroxidation, antioxidant parameters, histology, and the expression of drug transporters and biotransformation enzymes in the liver; (ii) the hepatic accumulation of AFB1 and its main metabolites (assessed using an in-house-validated HPLC-FLD method); (iii) the possible modulation of the above parameters elicited by TP. Broilers exposed to AFB1 alone displayed a significant increase in lipid peroxidation in the liver, which was completely reverted by the concomitant administration of TP. Although no changes in glutathione levels and antioxidant enzyme activities were detected in any treatment group, AFB1 significantly upregulated and downregulated the mRNA expression of CYP2A6 and Nrf2, respectively. TP counteracted such negative effects and increased the hepatic gene expression of selected antioxidant enzymes (i.e., CAT and SOD2) and drug transporters (i.e., ABCG2), which were further enhanced in combination with AFB1. Moreover, both AFB1 and TP increased the mRNA levels of ABCC2 and ABCG2 in the duodenum. The latter changes might be implicated in the decrease in hepatic AFB1 to undetectable levels (

Asunto(s)
Antioxidantes , Micotoxinas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Pollos/metabolismo , Curcuma/metabolismo , Polvos/metabolismo , Polvos/farmacología , Micotoxinas/metabolismo , Aflatoxina B1/metabolismo , Hígado , Estrés Oxidativo , ARN Mensajero/metabolismo
17.
EFSA J ; 21(2): e07806, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36751491

RESUMEN

In 2017, the EFSA Panel on Contaminants in the Food Chain (CONTAM) adopted a Scientific Opinion on the risks for animal health related to the presence of deoxynivalenol (DON) and its acetylated and modified forms in food and feed. No observed adverse effect levels (NOAELs) and lowest observed adverse effect levels (LOAELs) were derived for different animal species. For horses, an NOAEL of 36 mg DON/kg feed was established, the highest concentration tested and not showing adverse effects. For poultry, an NOAEL of 5 mg DON/kg feed for broiler chickens and laying hens, and an NOAEL of 7 mg DON/kg feed for ducks and turkeys was derived. The European Commission requested EFSA to review the information regarding the toxicity of DON for horses and poultry and to revise, if necessary, the established reference points (RPs). Adverse effect levels of 1.9 and 1.7 mg DON/kg feed for, respectively, broiler chickens and turkeys were derived from reassessment of existing studies and newly available literature, showing that DON causes effects on the intestines, in particular the jejunum, with a decreased villus height but also histological damage. An RP for adverse animal health effects of 0.6 mg/kg feed for broiler chickens and turkeys, respectively, was established. For horses, an adverse effect level of 5.6 mg DON/kg feed was established from studies showing reduced feed intake, with an RP for adverse animal health effects of 3.5 mg/kg feed. For ducks and laying hens, RPs remain unchanged. Based on mean and P95 (UB) exposure estimates performed in the previous Opinion, the risk of adverse health effects of feeds containing DON was considered a potential concern for broiler chickens and turkeys. For horses, the risk for adverse health effects from feed containing DON is low.

18.
EFSA J ; 21(7): e08102, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37448443

RESUMEN

The European Commission requested EFSA to provide an assessment of the processing conditions which make Ambrosia seeds non-viable in feed materials and compound feed. This assessment also includes information on a reliable procedure to verify the non-viability of the seeds. Ambrosia seeds are known contaminants in feed with maximum levels set in the Directive 2002/32/EC. The manufacturing processes and processing conditions applied to the feed may affect the viability of the Ambrosia seeds. Therefore, the CONTAM Panel compared these conditions with conditions that have been shown to be sufficient to render Ambrosia seeds non-viable. The Panel concluded with a certainty of 99-100% that solvent extraction and toasting of oilseed meals at temperatures of 120°C with steam injection for 10 min or more will make Ambrosia seeds non-viable. Since milling/grinding feed materials for compound feed of piglets, aquatic species and non-food producing animals would not allow particles of sizes ≥1 mm (the minimum size of viable Ambrosia seeds) passing the grinding process it was considered very likely (with ≥ 90% certainty) that these feeds will not contain viable Ambrosia seeds. In poultry, pig, and possibly cattle feed, particle sizes are ≥ 1 mm and therefore Ambrosia seeds could likely (66-90% certainty) survive the grinding process. Starch and gluten either from corn or wheat wet milling would not contain Ambrosia seeds with 99-100% certainty. Finally, ensiling fresh forages contaminated with A. artemisiifolia seeds for more than 3 months is very likely to render all seeds non-viable. The Panel concluded that a combination of the germination test and a subsequent triphenyl-tetrazolium-chloride (TTC) test will very likely (with ≥ 90% certainty) verify the non-viability of Ambrosia seeds. The Panel recommends that data on the presence of viable Ambrosia seeds before and after the different feed production processes should be generated.

19.
EFSA J ; 21(3): e07866, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36875862

RESUMEN

The European Commission asked EFSA for a scientific opinion on the risks for human health of the presence of grayanotoxins (GTXs) in 'certain honey' from Ericaceae plants. The risk assessment included all structurally related grayananes occurring with GTXs in 'certain' honey. Oral exposure is associated with acute intoxication in humans. Acute symptoms affect the muscles, nervous and cardiovascular systems. These may lead to complete atrioventricular block, convulsions, mental confusion, agitation, syncope and respiratory depression. For acute effects, the CONTAM Panel derived a reference point (RP) of 15.3 µg/kg body weight for the sum of GTX I and III based on a BMDL10 for reduced heart rate in rats. A similar relative potency was considered for GTX I. Without chronic toxicity studies, an RP for long-term effects could not be derived. There is evidence for genotoxicity in mice exposed to GTX III or honey containing GTX I and III, showing increased levels of chromosomal damage. The mechanism of genotoxicity is unknown. Without representative occurrence data for the sum of GTX I and III and consumption data from Ericaceae honey, acute dietary exposure was estimated based on selected concentrations for GTX I and III reflecting concentrations measured in 'certain' honeys. Applying a margin of exposure (MOE) approach, the estimated MOEs raised health concerns for acute toxicity. The Panel calculated the highest concentrations for GTX I and III below which no acute effects would be expected following 'certain honey' consumption. The Panel is 75% or more certain that the calculated highest concentration of 0.05 mg for the sum of GTX I and III per kg honey is protective for all age groups regarding acute intoxications. This value does not consider other grayananes in 'certain honey' and does not cover the identified genotoxicity.

20.
EFSA J ; 21(4): e07960, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37089187

RESUMEN

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of potassium and sodium ferrocyanide as technological feed additives for all animal species. The additives sodium- and potassium ferrocyanide are intended to be used in sodium chloride with a maximum content of 80 mg ferrocyanide anion (anhydrous)/kg salt. The FEEDAP Panel concluded that the use of sodium ferrocyanide and potassium ferrocyanide is safe, when added to sodium chloride at a maximum content of 80 mg ferrocyanide anion/kg for: turkey for fattening and laying hens and other laying/breeding birds; all porcine species and categories, all ruminant species and categories, rabbit, horse, salmonids and other minor fin fish, dogs and cats. In the absence of a margin of safety, the use of sodium and potassium chloride according to the proposed conditions of use is not considered to be safe for chickens for fattening and other poultry species for fattening or reared for laying/breeding other than turkeys. In the absence of information on the use of sodium chloride in the diets for any other animal species, no conclusion on a potentially safe level of sodium chloride, supplemented with 80 mg ferrocyanide anions (anhydrous)/kg, could be made. The use of sodium and potassium ferrocyanide in animal nutrition under the conditions of use proposed is of no concern for consumer safety. The results of in vivo studies showed that sodium and potassium ferrocyanide are not irritant to skin and eye and are not skin sensitisers. However, owing to the presence of nickel, sodium ferrocyanide, is considered a dermal and respiratory sensitiser. No conclusions could be reached on the safety of the user exposed via inhalation for potassium ferrocyanide. The use of sodium and potassium ferrocyanide as feed additives is considered safe for the environment. The additives are considered to be efficacious as anticaking agents in sodium chloride at the proposed use level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA