Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 209(2): 164-174, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37938162

RESUMEN

Rationale: Respiratory metagenomics (RMg) needs evaluation in a pilot service setting to determine utility and inform implementation into routine clinical practice. Objectives: Feasibility, performance, and clinical impacts on antimicrobial prescribing and infection control were recorded during a pilot RMg service. Methods: RMg was performed on 128 samples from 87 patients with suspected lower respiratory tract infection (LRTI) on two general and one specialist respiratory ICUs at Guy's and St Thomas' NHS Foundation Trust, London. Measurements and Main Results: During the first 15 weeks, RMg provided same-day results for 110 samples (86%), with a median turnaround time of 6.7 hours (interquartile range = 6.1-7.5 h). RMg was 93% sensitive and 81% specific for clinically relevant pathogens compared with routine testing. Forty-eight percent of RMg results informed antimicrobial prescribing changes (22% escalation; 26% deescalation) with escalation based on speciation in 20 out of 24 cases and detection of acquired-resistance genes in 4 out of 24 cases. Fastidious or unexpected organisms were reported in 21 samples, including anaerobes (n = 12), Mycobacterium tuberculosis, Tropheryma whipplei, cytomegalovirus, and Legionella pneumophila ST1326, which was subsequently isolated from the bedside water outlet. Application to consecutive severe community-acquired LRTI cases identified Staphylococcus aureus (two with SCCmec and three with luk F/S virulence determinants), Streptococcus pyogenes (emm1-M1uk clone), S. dysgalactiae subspecies equisimilis (STG62647A), and Aspergillus fumigatus with multiple treatments and public health impacts. Conclusions: This pilot study illustrates the potential of RMg testing to provide benefits for antimicrobial treatment, infection control, and public health when provided in a real-world critical care setting. Multicenter studies are now required to inform future translation into routine service.


Asunto(s)
Antiinfecciosos , Infecciones del Sistema Respiratorio , Humanos , Proyectos Piloto , Londres , Unidades de Cuidados Intensivos , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/tratamiento farmacológico
2.
Clin Infect Dis ; 76(6): 1125-1128, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36327795

RESUMEN

The management of coronavirus disease 2019 has become more complex due to the expansion of available therapies. The presence of severe acute respiratory syndrome coronavirus 2 variants and mutations further complicates treatment due to their differing susceptibilities to therapies. Here we outline the use of real-time whole genome sequencing to detect persistent infection, evaluate for mutations confering resistance to treatments, and guide treatment decisions.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , Secuenciación Completa del Genoma , Mutación
3.
J Virol ; 96(23): e0125022, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36350154

RESUMEN

The appearance of new dominant variants of concern (VOC) of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) threatens the global response to the coronavirus disease 2019 (COVID-19) pandemic. Of these, the alpha variant (also known as B.1.1.7), which appeared initially in the United Kingdom, became the dominant variant in much of Europe and North America in the first half of 2021. The spike (S) glycoprotein of alpha acquired seven mutations and two deletions compared to the ancestral virus, including the P681H mutation adjacent to the polybasic cleavage site, which has been suggested to enhance S cleavage. Here, we show that the alpha spike protein confers a level of resistance to beta interferon (IFN-ß) in human lung epithelial cells. This correlates with resistance to an entry restriction mediated by interferon-induced transmembrane protein 2 (IFITM2) and a pronounced infection enhancement by IFITM3. Furthermore, the P681H mutation is essential for resistance to IFN-ß and context-dependent resistance to IFITMs in the alpha S. P681H reduces dependence on endosomal cathepsins, consistent with enhanced cell surface entry. However, reversion of H681 does not reduce cleaved spike incorporation into particles, indicating that it exerts its effect on entry and IFN-ß downstream of furin cleavage. Overall, we suggest that, in addition to adaptive immune escape, mutations associated with VOC may well also confer a replication and/or transmission advantage through adaptation to resist innate immune mechanisms. IMPORTANCE Accumulating evidence suggests that variants of concern (VOC) of SARS-CoV-2 evolve to evade the human immune response, with much interest focused on mutations in the spike protein that escape from antibodies. However, resistance to the innate immune response is essential for efficient viral replication and transmission. Here, we show that the alpha (B.1.1.7) VOC of SARS-CoV-2 is substantially more resistant to type I interferons than the parental Wuhan-like virus. This correlates with resistance to the antiviral protein IFITM2 and enhancement by its paralogue IFITM3. The key determinant of this is a proline-to-histidine change at position 681 in S adjacent to the furin cleavage site, which in the context of the alpha spike modulates cell entry pathways of SARS-CoV-2. Reversion of the mutation is sufficient to restore interferon and IFITM2 sensitivity, highlighting the dynamic nature of the SARS CoV-2 as it adapts to both innate and adaptive immunity in the humans.


Asunto(s)
COVID-19 , Interferón Tipo I , Humanos , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Furina/metabolismo , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Línea Celular , Mutación , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo
4.
Mol Psychiatry ; 27(12): 5049-5061, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36195636

RESUMEN

Coronavirus disease 2019 (COVID-19), represents an enormous new threat to our healthcare system and particularly to the health of older adults. Although the respiratory symptoms of COVID-19 are well recognized, the neurological manifestations, and their underlying cellular and molecular mechanisms, have not been extensively studied yet. Our study is the first one to test the direct effect of serum from hospitalised COVID-19 patients on human hippocampal neurogenesis using a unique in vitro experimental assay with human hippocampal progenitor cells (HPC0A07/03 C). We identify the different molecular pathways activated by serum from COVID-19 patients with and without neurological symptoms (i.e., delirium), and their effects on neuronal proliferation, neurogenesis, and apoptosis. We collected serum sample twice, at time of hospital admission and approximately 5 days after hospitalization. We found that treatment with serum samples from COVID-19 patients with delirium (n = 18) decreased cell proliferation and neurogenesis, and increases apoptosis, when compared with serum samples of sex- and age-matched COVID-19 patients without delirium (n = 18). This effect was due to a higher concentration of interleukin 6 (IL6) in serum samples of patients with delirium (mean ± SD: 229.9 ± 79.1 pg/ml, vs. 32.5 ± 9.5 pg/ml in patients without delirium). Indeed, treatment of cells with an antibody against IL6 prevented the decreased cell proliferation and neurogenesis and the increased apoptosis. Moreover, increased concentration of IL6 in serum samples from delirium patients stimulated the hippocampal cells to produce IL12 and IL13, and treatment with an antibody against IL12 or IL13 also prevented the decreased cell proliferation and neurogenesis, and the increased apoptosis. Interestingly, treatment with the compounds commonly administered to acute COVID-19 patients (the Janus kinase inhibitors, baricitinib, ruxolitinib and tofacitinib) were able to restore normal cell viability, proliferation and neurogenesis by targeting the effects of IL12 and IL13. Overall, our results show that serum from COVID-19 patients with delirium can negatively affect hippocampal-dependent neurogenic processes, and that this effect is mediated by IL6-induced production of the downstream inflammatory cytokines IL12 and IL13, which are ultimately responsible for the detrimental cellular outcomes.


Asunto(s)
COVID-19 , Delirio , Hipocampo , Neurogénesis , Anciano , Humanos , COVID-19/sangre , COVID-19/metabolismo , COVID-19/patología , Delirio/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Interleucina-12/metabolismo , Interleucina-12/farmacología , Interleucina-13/metabolismo , Interleucina-13/farmacología , Interleucina-6 , Células Madre/metabolismo , Células Madre/virología
5.
PLoS Pathog ; 16(9): e1008817, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32970782

RESUMEN

There is a clear requirement for an accurate SARS-CoV-2 antibody test, both as a complement to existing diagnostic capabilities and for determining community seroprevalence. We therefore evaluated the performance of a variety of antibody testing technologies and their potential use as diagnostic tools. Highly specific in-house ELISAs were developed for the detection of anti-spike (S), -receptor binding domain (RBD) and -nucleocapsid (N) antibodies and used for the cross-comparison of ten commercial serological assays-a chemiluminescence-based platform, two ELISAs and seven colloidal gold lateral flow immunoassays (LFIAs)-on an identical panel of 110 SARS-CoV-2-positive samples and 50 pre-pandemic negatives. There was a wide variation in the performance of the different platforms, with specificity ranging from 82% to 100%, and overall sensitivity from 60.9% to 87.3%. However, the head-to-head comparison of multiple sero-diagnostic assays on identical sample sets revealed that performance is highly dependent on the time of sampling, with sensitivities of over 95% seen in several tests when assessing samples from more than 20 days post onset of symptoms. Furthermore, these analyses identified clear outlying samples that were negative in all tests, but were later shown to be from individuals with mildest disease presentation. Rigorous comparison of antibody testing platforms will inform the deployment of point-of-care technologies in healthcare settings and their use in the monitoring of SARS-CoV-2 infections.


Asunto(s)
Anticuerpos Antivirales/análisis , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , Sistemas de Atención de Punto , Pruebas Serológicas/métodos , Adulto , Anciano , Betacoronavirus , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico , Servicios de Salud Comunitaria , Proteínas de la Nucleocápside de Coronavirus , Ensayo de Inmunoadsorción Enzimática , Femenino , Hospitales , Humanos , Inmunoensayo , Mediciones Luminiscentes , Masculino , Persona de Mediana Edad , Proteínas de la Nucleocápside/inmunología , Pandemias , Fosfoproteínas , SARS-CoV-2 , Sensibilidad y Especificidad , Glicoproteína de la Espiga del Coronavirus/inmunología
6.
J Viral Hepat ; 29(7): 559-568, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35357750

RESUMEN

Innovative testing approaches and care pathways are required to meet global hepatitis B virus (HBV) and hepatitis C virus (HCV) elimination goals. Routine blood-borne virus (BBV) testing in emergency departments (EDs) in high-prevalence areas is suggested by the European Centre for Disease Prevention and Control (ECDC) but there is limited evidence for this. Universal HIV testing in our ED according to UK guidance has been operational since 2015. We conducted a real-world service evaluation of a modified electronic patient record (EPR) system to include opportunistic opt-out HBV/reflex-HCV tests for any routine blood test orders for ED attendees aged ≥16 years. Reactive laboratory results were communicated directly to specialist clinical teams. Our model for contacting patients requiring linkage to care (new diagnoses/known but disengaged) evolved from initially primarily hospital-led to collaborating with regional health and community service networks. Over 11 months, 81,088 patients attended the ED; 36,865 (45.5%) had a blood test. Overall uptake for both HBV and HCV testing was 75%. Seroprevalence was 0.9% for hepatitis B surface antigen (HBsAg) and 0.9% for HCV antigen (HCV-Ag). 79% of 140 successfully contacted HBsAg+patients required linkage to care, of which 87% engaged. 76% of 130 contactable HCV-Ag+patients required linkage, 52% engaged. Our results demonstrate effectiveness and sustainability of universal ED EPR opt-out HBV/HCV testing combined with comprehensive linkage to care pathways, allowing care provision particularly for marginalized at-risk groups with limited healthcare access. The findings support the ECDC BBV testing guidance and may inform future UK hepatitis testing guidance.


Asunto(s)
Infecciones por VIH , Hepatitis B , Hepatitis C , Servicio de Urgencia en Hospital , Hepacivirus , Hepatitis B/diagnóstico , Hepatitis B/epidemiología , Hepatitis B/prevención & control , Antígenos de Superficie de la Hepatitis B , Virus de la Hepatitis B , Hepatitis C/diagnóstico , Hepatitis C/epidemiología , Humanos , Estudios Seroepidemiológicos
7.
Cost Eff Resour Alloc ; 20(1): 60, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376920

RESUMEN

BACKGROUND: Numerous studies have shown the effectiveness of testing for hepatitis B (HBV) and hepatitis C (HCV) in emergency departments (ED), due to the elevated prevalence amongst attendees. The aim of this study was to conduct a cost-effectiveness analysis of universal opt-out HBV and HCV testing in EDs based on 2 long-term studies of the real-world effectiveness of testing in 2 large ED's in the UK. METHODS: A Markov model was used to evaluate ED-based HBV and HCV testing versus no ED testing, in addition to current testing practice. The two EDs had a HBV HBsAg prevalence of 0.5-0.9% and an HCV RNA prevalence of 0.9-1.0%. The analysis was performed from a UK health service perspective, over a lifetime time horizon. Costs are reported in British pounds (GBP), and outcomes as quality adjusted life years (QALYs), with both discounted at 3.5% per year. Incremental cost-effectiveness ratios (ICER) are calculated as costs per QALY gained. A willingness-to-pay threshold of £20,000/QALY was used. The cost-effectiveness was estimated for both infections, in both ED's. RESULTS: HBV and HCV testing were highly cost-effective in both settings, with ICERs ranging from £7,177 to £12,387 per QALY gained. In probabilistic analyses, HBV testing was 89-94% likely to be cost-effective at the threshold, while HCV testing was 94-100% likely to be cost-effective, across both settings. In deterministic sensitivity analyses, testing remained cost-effective in both locations at ≥ 0.25% HBsAg prevalence, and ≥ 0.49% HCV RNA prevalence. This is much lower than the prevalence observed in the two EDs included in this study. CONCLUSIONS: HBV and HCV testing in urban EDs is highly cost-effective in the UK, and can be cost-effective at relatively low prevalence. These results should be reflected in UK and European hepatitis testing guidelines.

8.
Value Health ; 23(8): 1003-1011, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32828211

RESUMEN

OBJECTIVES: The prevalence of hepatitis is high in emergency department (ED) attendees in the United Kingdom, with a prevalence of up to 2% for hepatitis B (HBV) HBsAg, and 2.9% for hepatitis C (HCV) RNA. The aim of this paper is to perform an economic evaluation of opt-out ED-based HCV and HBV testing. METHODS: A Markov model was developed to analyze the cost-effectiveness of opt-out HCV and HBV testing in EDs in the UK. The model used data from UK studies of ED testing to parameterize the HCV and HBV prevalence (1.4% HCV RNA, 0.84% HBsAg), test costs, and intervention effects (contact rates and linkage to care). For HCV, we used an antibody test cost of £3.64 and RNA test cost of £68.38, and assumed direct-acting antiviral treatment costs of £10 000. For HBV, we used a combined HBsAg and confirmatory test cost of £5.79. We also modeled the minimum prevalence of HCV (RNA-positive) and HBV (HBsAg) required to make ED testing cost-effective at a £20 000 willingness to pay per quality-adjusted life-year threshold. RESULTS: In the base case, ED testing was highly cost-effective, with HCV and HBV testing costing £8019 and £9858 per quality-adjusted life-year gained, respectively. HCV and HBV ED testing remained cost-effective at 0.25% HCV RNA or HBsAg prevalence or higher. CONCLUSIONS: Emergency department testing for HCV and HBV is highly likely to be cost-effective in many areas across the UK depending on their prevalence. Ongoing studies will help evaluate ED testing across different regions to inform testing guidelines.


Asunto(s)
Servicio de Urgencia en Hospital/organización & administración , Hepatitis B/diagnóstico , Hepatitis C/diagnóstico , Tamizaje Masivo/organización & administración , Análisis Costo-Beneficio , Servicio de Urgencia en Hospital/economía , Costos de Hospital , Humanos , Cadenas de Markov , Tamizaje Masivo/economía , Tamizaje Masivo/métodos , Modelos Econométricos , Reino Unido
9.
Analyst ; 145(16): 5638-5646, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32638712

RESUMEN

An evaluation of a rapid portable gold-nanotechnology measuring SARS-CoV-2 IgM, IgA and IgG antibody concentrations against spike 1 (S1), spike 2 (S) and nucleocapsid (N) was conducted using serum samples from 74 patients tested for SARS-CoV-2 RNA on admission to hospital, and 47 historical control patients from March 2019. 59 patients were RNA(+) and 15 were RNA(-). A serum (±) classification was derived for all three antigens and a quantitative serological profile was obtained. Serum(+) was identified in 30% (95% CI 11-48) of initially RNA(-) patients, in 36% (95% CI 17-54) of RNA(+) patients before 10 days, 77% (95% CI 67-87) between 10 and 20 days and 95% (95% CI 86-100) after 21 days. The patient-level diagnostic accuracy relative to RNA(±) after 10 days displayed 88% sensitivity (95% CI 75-95) and 75% specificity (95% CI 22-99), although specificity compared with historical controls was 100% (95%CI 91-100). This study provides robust support for further evaluation and validation of this novel technology in a clinical setting and highlights challenges inherent in assessment of serological tests for an emerging disease such as COVID-19.


Asunto(s)
Anticuerpos Antivirales/análisis , Betacoronavirus/inmunología , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , Pruebas Serológicas/métodos , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/inmunología , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico , Estudios de Cohortes , Infecciones por Coronavirus/sangre , Proteínas de la Nucleocápside de Coronavirus , Reacciones Falso Negativas , Femenino , Oro/química , Humanos , Inmunoglobulina A/análisis , Inmunoglobulina A/inmunología , Inmunoglobulina G/análisis , Inmunoglobulina G/inmunología , Inmunoglobulina M/análisis , Inmunoglobulina M/inmunología , Masculino , Nanopartículas del Metal/química , Persona de Mediana Edad , Proteínas de la Nucleocápside/inmunología , Pandemias , Fosfoproteínas , Neumonía Viral/sangre , SARS-CoV-2 , Sensibilidad y Especificidad , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto Joven
12.
Commun Med (Lond) ; 4(1): 135, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972920

RESUMEN

BACKGROUND: Clinical metagenomics involves the genomic sequencing of all microorganisms in clinical samples ideally after depletion of human DNA to increase sensitivity and reduce turnaround times. Current human DNA depletion methods preferentially preserve either DNA or RNA containing microbes, but not both simultaneously. Here we describe and present data using a practical and rapid mechanical host-depletion method allowing simultaneous detection of RNA and DNA microorganisms linked with nanopore sequencing. METHODS: The human cells from respiratory samples are lysed mechanically using 1.4 mm zirconium-silicate spheres and the human DNA is depleted using a nonspecific endonuclease. The RNA is converted to dsDNA to allow the simultaneous sequencing of DNA and RNA. RESULTS: The method decreases human DNA concentration by a median of eight Ct values while detecting a broad range of RNA & DNA viruses, bacteria, including atypical pathogens (Legionella, Chlamydia, Mycoplasma) and fungi (Candida, Pneumocystis, Aspergillus). The first automated reports are generated after 30 min sequencing from a 7 h end-to-end workflow. Sensitivity and specificity for bacterial detection are 90% and 100%, respectively, and viral detection are 92% and 100% after 2 h of sequencing. Prospective validation on 33 consecutive lower respiratory tract samples from ventilated patients with suspected pneumonia shows 60% concordance with routine testing, detection of additional pathogens in 21% of samples and pathogen genomic assembly achieve for 42% of viruses and 33% of bacteria. CONCLUSIONS: Although further workflow refinement and validation on samples containing a broader range of pathogens is required, it holds promise as a clinically deployable workflow suitable for evaluation in routine microbiology laboratories.


Metagenomics is the analysis of genetic material from microbes such as bacteria and viruses in a sample. There are limitations with existing metagenomics methods, such as not being able to detect the full range of microbes present in a sample. This paper introduces an approach that identifies multiple types of microbes. This is accomplished through the mechanical disruption of human cells, which allows for an effective depletion of human genetic material. Our method demonstrates encouraging preliminary results within a 7 h process, achieving good sensitivity for the detection of bacteria and viruses. We demonstrate the identification of relevant microbes in samples from patients with respiratory infections. This technique holds promise for adoption in clinical settings, potentially enhancing our ability to diagnose respiratory infections quickly.

13.
Open Forum Infect Dis ; 11(1): ofad612, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38269048

RESUMEN

The optimum treatment for persistent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is not known. Our case series, across 5 hospitals in 3 countries, describes 11 cases where persistent SARS-CoV-2 infection was successfully treated with prolonged courses (median, 10 days [range, 10-18 days]) of nirmatrelvir/ritonavir (Paxlovid). Most cases (9/11) had hematological malignancy and 10 (10/11) had received CD20-depleting therapy. The median duration of infection was 103 days (interquartile range, 85-138 days). The majority (10/11) were hospitalized, and 7 (7/11) had severe/critical disease. All survived and 9 of 11 demonstrated viral clearance, almost half (4/9) of whom received nirmatrelvir/ritonavir as monotherapy. This case series suggests that prolonged nirmatrelvir/ritonavir has a role in treating persistent infection.

14.
Oxf Open Immunol ; 4(1): iqac012, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844257

RESUMEN

Neutralizing monoclonal antibodies (mAbs) targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein have been developed for the treatment of COVID-19. Whilst antibody therapy has been shown to reduce the risk of COVID-19-associated hospitalization and death, there is limited understanding of the endogenous immunity to SARS-CoV-2 generated in mAb-treated patients and therefore ongoing susceptibility to future infections. Here we measure the endogenous antibody response in SARS-CoV-2-infected individuals treated with REGN-COV2 (Ronapreve). We show that in the majority of unvaccinated, delta-infected REGN-COV2-treated individuals, an endogenous antibody response is generated, but, like untreated, delta-infected individuals, there was a limited neutralization breadth. However, some vaccinated individuals who were seronegative at SARS-CoV-2 infection baseline and some unvaccinated individuals failed to produce an endogenous immune response following infection and REGN-COV2 treatment demonstrating the importance of mAb therapy in some patient populations.

15.
mBio ; 14(5): e0120623, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37747187

RESUMEN

IMPORTANCE: With the emergence of SARS-CoV-2 viral variants, there has been an increase in infections in vaccinated individuals. Here, we isolated monoclonal antibodies (mAbs) from individuals experiencing a breakthrough infection (Delta or BA.1) to determine how exposure to a heterologous Spike broadens the neutralizing antibody response at the monoclonal level. All mAbs isolated had reactivity to the Spike of the vaccine and infection variant. While many mAbs showed reduced neutralization of current circulating variants, we identified mAbs with broad and potent neutralization of BA.2.75.2, XBB, XBB.1.5, and BQ.1.1 indicating the presence of conserved epitopes on Spike. These results indicate that variant-based vaccine boosters have the potential to broaden the vaccine response.


Asunto(s)
Infección Irruptiva , Vacunas , Humanos , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales
16.
Microb Genom ; 9(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37590039

RESUMEN

Rapid respiratory viral whole genome sequencing (WGS) in a clinical setting can inform real-time outbreak and patient treatment decisions, but the feasibility and clinical utility of influenza A virus (IAV) WGS using Nanopore technology has not been demonstrated. A 24 h turnaround Nanopore IAV WGS protocol was performed on 128 reverse transcriptase PCR IAV-positive nasopharyngeal samples taken over seven weeks of the 2022-2023 winter influenza season, including 25 from patients with nosocomial IAV infections and 102 from patients attending the Emergency Department. WGS results were reviewed collectively alongside clinical details for interpretation and reported to clinical teams. All eight segments of the IAV genome were recovered for 97/128 samples (75.8 %) and the haemagglutinin gene for 117/128 samples (91.4 %). Infection prevention and control identified nosocomial IAV infections in 19 patients across five wards. IAV WGS revealed two separate clusters on one ward and excluded transmission across different wards with contemporaneous outbreaks. IAV WGS also identified neuraminidase inhibitor resistance in a persistently infected patient and excluded avian influenza in a sample taken from an immunosuppressed patient with a history of travel to Singapore which had failed PCR subtyping. Accurate IAV genomes can be generated in 24 h using a Nanopore protocol accessible to any laboratory with SARS-CoV-2 Nanopore sequencing capacity. In addition to replicating reference laboratory surveillance results, IAV WGS can identify antiviral resistance and exclude avian influenza. IAV WGS also informs management of nosocomial outbreaks, though molecular and clinical epidemiology were concordant in this study, limiting the impact on decision-making.


Asunto(s)
COVID-19 , Infección Hospitalaria , Virus de la Influenza A , Gripe Humana , Nanoporos , Humanos , Estudios de Factibilidad , Gripe Humana/tratamiento farmacológico , Gripe Humana/epidemiología , SARS-CoV-2/genética , Brotes de Enfermedades , Infección Hospitalaria/epidemiología , Virus de la Influenza A/genética
17.
Front Genet ; 14: 1138582, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051600

RESUMEN

The ongoing SARS-CoV-2 pandemic demonstrates the utility of real-time sequence analysis in monitoring and surveillance of pathogens. However, cost-effective sequencing requires that samples be PCR amplified and multiplexed via barcoding onto a single flow cell, resulting in challenges with maximising and balancing coverage for each sample. To address this, we developed a real-time analysis pipeline to maximise flow cell performance and optimise sequencing time and costs for any amplicon based sequencing. We extended our nanopore analysis platform MinoTour to incorporate ARTIC network bioinformatics analysis pipelines. MinoTour predicts which samples will reach sufficient coverage for downstream analysis and runs the ARTIC networks Medaka pipeline once sufficient coverage has been reached. We show that stopping a viral sequencing run earlier, at the point that sufficient data has become available, has no negative effect on subsequent down-stream analysis. A separate tool, SwordFish, is used to automate adaptive sampling on Nanopore sequencers during the sequencing run. This enables normalisation of coverage both within (amplicons) and between samples (barcodes) on barcoded sequencing runs. We show that this process enriches under-represented samples and amplicons in a library as well as reducing the time taken to obtain complete genomes without affecting the consensus sequence.

18.
Clin Microbiol Infect ; 29(7): 887-890, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36925107

RESUMEN

OBJECTIVES: Epidemiological and whole-genome sequencing analysis of an ongoing outbreak of Streptococcus pyogenes (Group A Streptococcus) in London (United Kingdom). METHODS: Prospective identification of Group A Streptococcus cases from a diagnostic laboratory serving central and south London between 27 November and 10 December 2022. Case notes were reviewed and isolates were retrieved. Case numbers were compared with the previous 5 years. Whole-genome sequencing was performed with long-read, nanopore technology for emm typing and identification of superantigen genes. Associations of pathogen-related factors with an invasive disease were assessed by single-variable and multi-variable logistic regression. RESULTS: Case numbers began increasing in October 2022 from a baseline of 2.0 cases per day, and in December 2022, the average daily case numbers reached 10.8 cases per day, four-fold the number usually seen in winter. A total of 113 cases were identified during the prospective study period. Three quarters (86/113, 76%) were paediatric cases, including 2 deaths. Of 113 cases, 11 (10%) were invasive. In total, 56 isolates were successfully sequenced, including 10 of 11 (91%) invasive isolates. The emm12 (33/56, 59%) and emm1 (9/56, 16%) types were predominant, with 7 of 9 (78%) emm1 isolates being from the M1uk clone. The majority of invasive isolates had superantigen genes spea (7/10, 70%) and spej (8/10, 80%), whereas, in non-invasive isolates, these superantigen genes were found less frequently (spea: 5/46, 11% and spej: 7/46, 15%). By multivariable analysis of pathogen-related factors, spea (OR 8.9, CI 1.4-57, p 0.020) and spej (OR 12, CI 1.8-78, p 0.011) were associated with invasive disease. CONCLUSIONS: emm12 and emm1 types predominate in the ongoing outbreak, which mainly affects children. In this outbreak, the spea and spej superantigen genes are associated with the severity of presentation.


Asunto(s)
Infecciones Estreptocócicas , Streptococcus pyogenes , Niño , Humanos , Estudios Prospectivos , Epidemiología Molecular , Londres/epidemiología , Antígenos Bacterianos/genética , Reino Unido/epidemiología , Superantígenos/genética , Brotes de Enfermedades , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/microbiología , Proteínas de la Membrana Bacteriana Externa/genética
19.
Hepatology ; 53(5): 1494-503, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21360567

RESUMEN

UNLABELLED: An excess of coinhibitory signals has been proposed to drive the T-cell exhaustion characteristic of persistent viral infections. In this study we examined the contribution of the coinhibitory receptor cytotoxic T lymphocyte antigen-4 (CTLA-4) to CD8 T cell tolerance in chronic hepatitis B virus (HBV) infection (CHB). CD8 T cells in patients with CHB have an increased propensity to express the coinhibitory receptor CTLA-4 and this correlates with viral load. CTLA-4 is up-regulated on those HBV-specific CD8 T cells with the highest levels of the proapoptotic protein Bim, which we have previously shown mediates their premature attrition; abrogation of CTLA-4-mediated coinhibition can reduce Bim expression. Longitudinal study of CHB patients beginning antiviral therapy reveals that HBV DNA suppression induces transient reconstitution of HBV-specific CD8 T cells but does not reprogram their CTLA-4(hi) Bim(hi) tolerogenic phenotype. Blocking CTLA-4 is able to increase the expansion of interferon gamma (IFN-γ)-producing HBV-specific CD8 T cells in both the peripheral and intrahepatic compartments. The rescue of anti-HBV responses by either CTLA-4 or PD-L1 blockade is nonredundant. CONCLUSION: CTLA-4 is expressed by HBV-specific CD8 T cells with high levels of Bim and helps to drive this proapoptotic phenotype. CTLA-4 blockade could form one arm of a therapeutic approach to modulate the diverse patterns of coregulation of T-cell exhaustion in this heterogeneous disease.


Asunto(s)
Antígenos CD/fisiología , Apoptosis/fisiología , Linfocitos T CD8-positivos/fisiología , Hepatitis B Crónica/inmunología , Adulto , Anciano , Antígeno CTLA-4 , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
20.
mBio ; 13(2): e0379821, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35297676

RESUMEN

Numerous studies have shown that a prior SARS-CoV-2 infection can greatly enhance the antibody response to COVID-19 vaccination, with this so called "hybrid immunity" leading to greater neutralization breadth against SARS-CoV-2 variants of concern. However, little is known about how breakthrough infection (BTI) in COVID-19-vaccinated individuals will impact the magnitude and breadth of the neutralizing antibody response. Here, we compared neutralizing antibody responses between unvaccinated and COVID-19-double-vaccinated individuals (including both AZD1222 and BNT162b2 vaccinees) who have been infected with the Delta (B.1.617.2) variant. Rapid production of spike-reactive IgG was observed in the vaccinated group, providing evidence of effective vaccine priming. Overall, potent cross-neutralizing activity against current SARS-CoV-2 variants of concern was observed in the BTI group compared to the infection group, including neutralization of the Omicron (B.1.1.529) variant. This study provides important insights into population immunity where transmission levels remain high and in the context of new or emerging variants of concern. IMPORTANCE COVID-19 vaccines have been vital in controlling SARS-CoV-2 infections and reducing hospitalizations. However, breakthrough SARS-CoV-2 infections (BTI) occur in some vaccinated individuals. Here, we study how BTI impacts on the potency and the breadth of the neutralizing antibody response. We show that a Delta infection in COVID-19-vaccinated individuals provides potent neutralization against the current SARS-CoV-2 variants of concern, including the Omicron variant.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , ChAdOx1 nCoV-19 , Humanos , SARS-CoV-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA