Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuroimage ; 270: 119972, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36842522

RESUMEN

Functional MRI (fMRI) data may be contaminated by artifacts arising from a myriad of sources, including subject head motion, respiration, heartbeat, scanner drift, and thermal noise. These artifacts cause deviations from common distributional assumptions, introduce spatial and temporal outliers, and reduce the signal-to-noise ratio of the data-all of which can have negative consequences for the accuracy and power of downstream statistical analysis. Scrubbing is a technique for excluding fMRI volumes thought to be contaminated by artifacts and generally comes in two flavors. Motion scrubbing based on subject head motion-derived measures is popular but suffers from a number of drawbacks, among them the need to choose a threshold, a lack of generalizability to multiband acquisitions, and high rates of censoring of individual volumes and entire subjects. Alternatively, data-driven scrubbing methods like DVARS are based on observed noise in the processed fMRI timeseries and may avoid some of these issues. Here we propose "projection scrubbing", a novel data-driven scrubbing method based on a statistical outlier detection framework and strategic dimension reduction, including independent component analysis (ICA), to isolate artifactual variation. We undertake a comprehensive comparison of motion scrubbing with data-driven projection scrubbing and DVARS. We argue that an appropriate metric for the success of scrubbing is maximal data retention subject to reasonable performance on typical benchmarks such as the validity, reliability, and identifiability of functional connectivity. We find that stringent motion scrubbing yields worsened validity, worsened reliability, and produced small improvements to fingerprinting. Meanwhile, data-driven scrubbing methods tend to yield greater improvements to fingerprinting while not generally worsening validity or reliability. Importantly, however, data-driven scrubbing excludes a fraction of the number of volumes or entire sessions compared to motion scrubbing. The ability of data-driven fMRI scrubbing to improve data retention without negatively impacting the quality of downstream analysis has major implications for sample sizes in population neuroscience research.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador/métodos , Artefactos , Movimiento (Física) , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos
2.
Hum Brain Mapp ; 44(8): 3271-3282, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36999674

RESUMEN

Adolescents who are clinically recovered from concussion continue to show subtle motor impairment on neurophysiological and behavioral measures. However, there is limited information on brain-behavior relationships of persistent motor impairment following clinical recovery from concussion. We examined the relationship between subtle motor performance and functional connectivity of the brain in adolescents with a history of concussion, status post-symptom resolution, and subjective return to baseline. Participants included 27 adolescents who were clinically recovered from concussion and 29 never-concussed, typically developing controls (10-17 years); all participants were examined using the Physical and Neurologic Examination of Subtle Signs (PANESS). Functional connectivity between the default mode network (DMN) or dorsal attention network (DAN) and regions of interest within the motor network was assessed using resting-state functional magnetic resonance imaging (rsfMRI). Compared to controls, adolescents clinically recovered from concussion showed greater subtle motor deficits as evaluated by the PANESS and increased connectivity between the DMN and left lateral premotor cortex. DMN to left lateral premotor cortex connectivity was significantly correlated with the total PANESS score, with more atypical connectivity associated with more motor abnormalities. This suggests that altered functional connectivity of the brain may underlie subtle motor deficits in adolescents who have clinically recovered from concussion. More investigation is required to understand the persistence and longer-term clinical relevance of altered functional connectivity and associated subtle motor deficits to inform whether functional connectivity may serve as an important biomarker related to longer-term outcomes after clinical recovery from concussion.


Asunto(s)
Conmoción Encefálica , Imagen por Resonancia Magnética , Humanos , Adolescente , Imagen por Resonancia Magnética/métodos , Conmoción Encefálica/complicaciones , Conmoción Encefálica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos
3.
Brain ; 145(2): 441-456, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-34897383

RESUMEN

Classic psychedelic drugs such as psilocybin and lysergic acid diethylamide (LSD) have recaptured the imagination of both science and popular culture, and may have efficacy in treating a wide range of psychiatric disorders. Human and animal studies of psychedelic drug action in the brain have demonstrated the involvement of the serotonin 2A (5-HT2A) receptor and the cerebral cortex in acute psychedelic drug action, but different models have evolved to try to explain the impact of 5-HT2A activation on neural systems. Two prominent models of psychedelic drug action (the cortico-striatal thalamo-cortical, or CSTC, model and relaxed beliefs under psychedelics, or REBUS, model) have emphasized the role of different subcortical structures as crucial in mediating psychedelic drug effects. We describe these models and discuss gaps in knowledge, inconsistencies in the literature and extensions of both models. We then introduce a third circuit-level model involving the claustrum, a thin strip of grey matter between the insula and the external capsule that densely expresses 5-HT2A receptors (the cortico-claustro-cortical, or CCC, model). In this model, we propose that the claustrum entrains canonical cortical network states, and that psychedelic drugs disrupt 5-HT2A-mediated network coupling between the claustrum and the cortex, leading to attenuation of canonical cortical networks during psychedelic drug effects. Together, these three models may explain many phenomena of the psychedelic experience, and using this framework, future research may help to delineate the functional specificity of each circuit to the action of both serotonergic and non-serotonergic hallucinogens.


Asunto(s)
Alucinógenos , Animales , Encéfalo , Corteza Cerebral , Alucinógenos/farmacología , Alucinógenos/uso terapéutico , Humanos , Dietilamida del Ácido Lisérgico/farmacología , Psilocibina/farmacología
4.
Neuroimage ; 257: 119296, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35561944

RESUMEN

The exclusion of high-motion participants can reduce the impact of motion in functional Magnetic Resonance Imaging (fMRI) data. However, the exclusion of high-motion participants may change the distribution of clinically relevant variables in the study sample, and the resulting sample may not be representative of the population. Our goals are two-fold: 1) to document the biases introduced by common motion exclusion practices in functional connectivity research and 2) to introduce a framework to address these biases by treating excluded scans as a missing data problem. We use a study of autism spectrum disorder in children without an intellectual disability to illustrate the problem and the potential solution. We aggregated data from 545 children (8-13 years old) who participated in resting-state fMRI studies at Kennedy Krieger Institute (173 autistic and 372 typically developing) between 2007 and 2020. We found that autistic children were more likely to be excluded than typically developing children, with 28.5% and 16.1% of autistic and typically developing children excluded, respectively, using a lenient criterion and 81.0% and 60.1% with a stricter criterion. The resulting sample of autistic children with usable data tended to be older, have milder social deficits, better motor control, and higher intellectual ability than the original sample. These measures were also related to functional connectivity strength among children with usable data. This suggests that the generalizability of previous studies reporting naïve analyses (i.e., based only on participants with usable data) may be limited by the selection of older children with less severe clinical profiles because these children are better able to remain still during an rs-fMRI scan. We adapt doubly robust targeted minimum loss based estimation with an ensemble of machine learning algorithms to address these data losses and the resulting biases. The proposed approach selects more edges that differ in functional connectivity between autistic and typically developing children than the naïve approach, supporting this as a promising solution to improve the study of heterogeneous populations in which motion is common.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Adolescente , Trastorno del Espectro Autista/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Niño , Cognición , Humanos , Imagen por Resonancia Magnética/métodos
5.
Neuroimage ; 260: 119434, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35792293

RESUMEN

BACKGROUND: Classic psychedelics, such as psilocybin and LSD, and other serotonin 2A receptor (5-HT2AR) agonists evoke acute alterations in perception and cognition. Altered thalamocortical connectivity has been hypothesized to underlie these effects, which is supported by some functional MRI (fMRI) studies. These studies have treated the thalamus as a unitary structure, despite known differential 5-HT2AR expression and functional specificity of different intrathalamic nuclei. Independent Component Analysis (ICA) has been previously used to identify reliable group-level functional subdivisions of the thalamus from resting-state fMRI (rsfMRI) data. We build on these efforts with a novel data-maximizing ICA-based approach to examine psilocybin-induced changes in intrathalamic functional organization and thalamocortical connectivity in individual participants. METHODS: Baseline rsfMRI data (n=38) from healthy individuals with a long-term meditation practice was utilized to generate a statistical template of thalamic functional subdivisions. This template was then applied in a novel ICA-based analysis of the acute effects of psilocybin on intra- and extra-thalamic functional organization and connectivity in follow-up scans from a subset of the same individuals (n=18). We examined correlations with subjective reports of drug effect and compared with a previously reported analytic approach (treating the thalamus as a single functional unit). RESULTS: Several intrathalamic components showed significant psilocybin-induced alterations in spatial organization, with effects of psilocybin largely localized to the mediodorsal and pulvinar nuclei. The magnitude of changes in individual participants correlated with reported subjective effects. These components demonstrated predominant decreases in thalamocortical connectivity, largely with visual and default mode networks. Analysis in which the thalamus is treated as a singular unitary structure showed an overall numerical increase in thalamocortical connectivity, consistent with previous literature using this approach, but this increase did not reach statistical significance. CONCLUSIONS: We utilized a novel analytic approach to discover psilocybin-induced changes in intra- and extra-thalamic functional organization and connectivity of intrathalamic nuclei and cortical networks known to express the 5-HT2AR. These changes were not observed using whole-thalamus analyses, suggesting that psilocybin may cause widespread but modest increases in thalamocortical connectivity that are offset by strong focal decreases in functionally relevant intrathalamic nuclei.


Asunto(s)
Psilocibina , Serotonina , Corteza Cerebral/fisiología , Humanos , Imagen por Resonancia Magnética , Vías Nerviosas/fisiología , Psilocibina/farmacología , Descanso , Tálamo/fisiología
6.
Neuroradiology ; 64(2): 217-232, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34654960

RESUMEN

J-difference-edited spectroscopy is a valuable approach for the detection of low-concentration metabolites with magnetic resonance spectroscopy (MRS). Currently, few edited MRS studies are performed in neonates due to suboptimal signal-to-noise ratio, relatively long acquisition times, and vulnerability to motion artifacts. Nonetheless, the technique presents an exciting opportunity in pediatric imaging research to study rapid maturational changes of neurotransmitter systems and other metabolic systems in early postnatal life. Studying these metabolic processes is vital to understanding the widespread and rapid structural and functional changes that occur in the first years of life. The overarching goal of this review is to provide an introduction to edited MRS for neonates, including the current state-of-the-art in editing methods and editable metabolites, as well as to review the current literature applying edited MRS to the neonatal brain. Existing challenges and future opportunities, including the lack of age-specific reference data, are also discussed.


Asunto(s)
Encéfalo , Ácido gamma-Aminobutírico , Artefactos , Encéfalo/diagnóstico por imagen , Niño , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética
7.
Cereb Cortex ; 31(5): 2639-2652, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33386399

RESUMEN

Children with autism spectrum disorder (ASD) have difficulties perceiving and producing skilled gestures, or praxis. The inferior parietal lobule (IPL) is crucial to praxis acquisition and expression, yet how IPL connectivity contributes to autism-associated impairments in praxis as well as social-communicative skill remains unclear. Using resting-state functional magnetic resonance imaging, we applied independent component analysis to test how IPL connectivity relates to praxis and social-communicative skills in children with and without ASD. Across all children (with/without ASD), praxis positively correlated with connectivity of left posterior-IPL with the left dorsal premotor cortex and with the bilateral posterior/medial parietal cortex. Praxis also correlated with connectivity of right central-IPL connectivity with the left intraparietal sulcus and medial parietal lobe. Further, in children with ASD, poorer praxis and social-communicative skills both correlated with weaker right central-IPL connectivity with the left cerebellum, posterior cingulate, and right dorsal premotor cortex. Our findings suggest that IPL connectivity is linked to praxis development, that contributions arise bilaterally, and that right IPL connectivity is associated with impaired praxis and social-communicative skills in autism. The findings underscore the potential impact of IPL connectivity and impaired skill acquisition on the development of a range of social-communicative and motor functions during childhood, including autism-associated impairments.


Asunto(s)
Apraxias/diagnóstico por imagen , Trastorno del Espectro Autista/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Giro del Cíngulo/diagnóstico por imagen , Corteza Motora/diagnóstico por imagen , Lóbulo Parietal/diagnóstico por imagen , Habilidades Sociales , Apraxias/fisiopatología , Trastorno del Espectro Autista/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Estudios de Casos y Controles , Cerebelo/fisiopatología , Niño , Femenino , Neuroimagen Funcional , Gestos , Giro del Cíngulo/fisiopatología , Humanos , Imagen por Resonancia Magnética , Masculino , Corteza Motora/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Lóbulo Parietal/fisiopatología
8.
Artículo en Inglés | MEDLINE | ID: mdl-35992040

RESUMEN

Independent component analysis (ICA) is an unsupervised learning method popular in functional magnetic resonance imaging (fMRI). Group ICA has been used to search for biomarkers in neurological disorders including autism spectrum disorder and dementia. However, current methods use a principal component analysis (PCA) step that may remove low-variance features. Linear non-Gaussian component analysis (LNGCA) enables simultaneous dimension reduction and feature estimation including low-variance features in single-subject fMRI. A group LNGCA model is proposed to extract group components shared by more than one subject. Unlike group ICA methods, this novel approach also estimates individual (subject-specific) components orthogonal to the group components. To determine the total number of components in each subject, a parametric resampling test is proposed that samples spatially correlated Gaussian noise to match the spatial dependence observed in data. In simulations, estimated group components achieve higher accuracy compared to group ICA. The method is applied to a resting-state fMRI study on autism spectrum disorder in 342 children (252 typically developing, 90 with autism), where the group signals include resting-state networks. The discovered group components appear to exhibit different levels of temporal engagement in autism versus typically developing children, as revealed using group LNGCA. This novel approach to matrix decomposition is a promising direction for feature detection in neuroimaging.

9.
Neuroimage ; 234: 117965, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33744454

RESUMEN

Multiband acquisition, also called simultaneous multislice, has become a popular technique in resting-state functional connectivity studies. Multiband (MB) acceleration leads to a higher temporal resolution but also leads to spatially heterogeneous noise amplification, suggesting the costs may be greater in areas such as the subcortex. We evaluate MB factors of 2, 3, 4, 6, 8, 9, and 12 with 2 mm isotropic voxels, and additionally 2 mm and 3.3 mm single-band acquisitions, on a 32-channel head coil. Noise amplification was greater in deeper brain regions, including subcortical regions. Correlations were attenuated by noise amplification, which resulted in spatially varying biases that were more severe at higher MB factors. Temporal filtering decreased spatial biases in correlations due to noise amplification, but also tended to decrease effect sizes. In seed-based correlation maps, left-right putamen connectivity and thalamo-motor connectivity were highest in the single-band 3.3 mm protocol. In correlation matrices, MB 4, 6, and 8 had a greater number of significant correlations than the other acquisitions (both with and without temporal filtering). We recommend single-band 3.3 mm for seed-based subcortical analyses, and MB 4 provides a reasonable balance for studies analyzing both seed-based correlation maps and connectivity matrices. In multiband studies including secondary analyses of large-scale datasets, we recommend reporting effect sizes or test statistics instead of correlations. If correlations are reported, temporal filtering (or another method for thermal noise removal) should be used. The Emory Multiband Dataset is available on OpenNeuro.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Descanso , Adulto , Encéfalo/fisiología , Bases de Datos Factuales , Femenino , Humanos , Masculino , Red Nerviosa/fisiología , Descanso/fisiología , Adulto Joven
11.
Neuroimage ; 172: 478-491, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29391241

RESUMEN

Reliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods that pool information across subjects to inform estimation of subject-level effects (e.g., Bayesian approaches) have been shown to enhance reliability of subject-level FC. However, fully Bayesian approaches are computationally demanding, while empirical Bayesian approaches typically rely on using repeated measures to estimate the variance components in the model. Here, we avoid the need for repeated measures by proposing a novel measurement error model for FC describing the different sources of variance and error, which we use to perform empirical Bayes shrinkage of subject-level FC towards the group average. In addition, since the traditional intra-class correlation coefficient (ICC) is inappropriate for biased estimates, we propose a new reliability measure denoted the mean squared error intra-class correlation coefficient (ICCMSE) to properly assess the reliability of the resulting (biased) estimates. We apply the proposed techniques to test-retest resting-state fMRI data on 461 subjects from the Human Connectome Project to estimate connectivity between 100 regions identified through independent components analysis (ICA). We consider both correlation and partial correlation as the measure of FC and assess the benefit of shrinkage for each measure, as well as the effects of scan duration. We find that shrinkage estimates of subject-level FC exhibit substantially greater reliability than traditional estimates across various scan durations, even for the most reliable connections and regardless of connectivity measure. Additionally, we find partial correlation reliability to be highly sensitive to the choice of penalty term, and to be generally worse than that of full correlations except for certain connections and a narrow range of penalty values. This suggests that the penalty needs to be chosen carefully when using partial correlations.


Asunto(s)
Encéfalo/fisiología , Conectoma/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Red Nerviosa/fisiología , Teorema de Bayes , Encéfalo/anatomía & histología , Humanos , Imagen por Resonancia Magnética/métodos , Red Nerviosa/anatomía & histología
12.
Biostatistics ; 18(3): 521-536, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334131

RESUMEN

Outlier detection for high-dimensional (HD) data is a popular topic in modern statistical research. However, one source of HD data that has received relatively little attention is functional magnetic resonance images (fMRI), which consists of hundreds of thousands of measurements sampled at hundreds of time points. At a time when the availability of fMRI data is rapidly growing-primarily through large, publicly available grassroots datasets-automated quality control and outlier detection methods are greatly needed. We propose principal components analysis (PCA) leverage and demonstrate how it can be used to identify outlying time points in an fMRI run. Furthermore, PCA leverage is a measure of the influence of each observation on the estimation of principal components, which are often of interest in fMRI data. We also propose an alternative measure, PCA robust distance, which is less sensitive to outliers and has controllable statistical properties. The proposed methods are validated through simulation studies and are shown to be highly accurate. We also conduct a reliability study using resting-state fMRI data from the Autism Brain Imaging Data Exchange and find that removal of outliers using the proposed methods results in more reliable estimation of subject-level resting-state networks using independent components analysis.


Asunto(s)
Imagen por Resonancia Magnética , Análisis de Componente Principal , Algoritmos , Trastorno Autístico/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Humanos , Reproducibilidad de los Resultados
13.
Neuroimage ; 158: 155-175, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28687517

RESUMEN

Due to the dynamic, condition-dependent nature of brain activity, interest in estimating rapid functional connectivity (FC) changes that occur during resting-state functional magnetic resonance imaging (rs-fMRI) has recently soared. However, studying dynamic FC is methodologically challenging, due to the low signal-to-noise ratio of the blood oxygen level dependent (BOLD) signal in fMRI and the massive number of data points generated during the analysis. Thus, it is important to establish methods and summary measures that maximize reliability and the utility of dynamic FC to provide insight into brain function. In this study, we investigated the reliability of dynamic FC summary measures derived using three commonly used estimation methods - sliding window (SW), tapered sliding window (TSW), and dynamic conditional correlations (DCC) methods. We applied each of these techniques to two publicly available rs-fMRI test-retest data sets - the Multi-Modal MRI Reproducibility Resource (Kirby Data) and the Human Connectome Project (HCP Data). The reliability of two categories of dynamic FC summary measures were assessed, specifically basic summary statistics of the dynamic correlations and summary measures derived from recurring whole-brain patterns of FC ("brain states"). The results provide evidence that dynamic correlations are reliably detected in both test-retest data sets, and the DCC method outperforms SW methods in terms of the reliability of summary statistics. However, across all estimation methods, reliability of the brain state-derived measures was low. Notably, the results also show that the DCC-derived dynamic correlation variances are significantly more reliable than those derived using the non-parametric estimation methods. This is important, as the fluctuations of dynamic FC (i.e., its variance) has a strong potential to provide summary measures that can be used to find meaningful individual differences in dynamic FC. We therefore conclude that utilizing the variance of the dynamic connectivity is an important component in any dynamic FC-derived summary measure.


Asunto(s)
Encéfalo , Conectoma/métodos , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados
14.
Hum Brain Mapp ; 38(11): 5331-5342, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28745021

RESUMEN

Spatial normalization of brains to a standardized space is a widely used approach for group studies in functional magnetic resonance imaging (fMRI) data. Commonly used template-based approaches are complicated by signal dropout and distortions in echo planar imaging (EPI) data. The most widely used software packages implement two common template-based strategies: (1) affine transformation of the EPI data to an EPI template followed by nonlinear registration to an EPI template (EPInorm) and (2) affine transformation of the EPI data to the anatomic image for a given subject, followed by nonlinear registration of the anatomic data to an anatomic template, which produces a transformation that is applied to the EPI data (T1norm). EPI distortion correction can be used to adjust for geometric distortion of EPI relative to the T1 images. However, in practice, this EPI distortion correction step is often skipped. We compare these template-based strategies empirically in four large datasets. We find that the EPInorm approach consistently shows reduced variability across subjects, especially in the case when distortion correction is not applied. EPInorm also shows lower estimates for coregistration distances among subjects (i.e., within-dataset similarity is higher). Finally, the EPInorm approach shows higher T values in a task-based dataset. Thus, the EPInorm approach appears to amplify the power of the sample compared to the T1norm approach when not using distortion correction (i.e., the EPInorm boosts the effective sample size by 12-25%). In sum, these results argue for the use of EPInorm over the T1norm when no distortion correction is used. Hum Brain Mapp 38:5331-5342, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Trastorno Autístico/diagnóstico por imagen , Trastorno Autístico/fisiopatología , Encéfalo/fisiología , Encéfalo/fisiopatología , Niño , Preescolar , Humanos , Inhibición Psicológica , Persona de Mediana Edad , Actividad Motora/fisiología , Dinámicas no Lineales , Dolor/diagnóstico por imagen , Dolor/fisiopatología , Descanso , Adulto Joven
15.
Neuroimage ; 112: 14-29, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25731998

RESUMEN

A recent interest in resting state functional magnetic resonance imaging (rsfMRI) lies in subdividing the human brain into anatomically and functionally distinct regions of interest. For example, brain parcellation is often a necessary step for defining the network nodes used in connectivity studies. While inference has traditionally been performed on group-level data, there is a growing interest in parcellating single subject data. However, this is difficult due to the inherent low signal-to-noise ratio of rsfMRI data, combined with typically short scan lengths. A large number of brain parcellation approaches employ clustering, which begins with a measure of similarity or distance between voxels. The goal of this work is to improve the reproducibility of single-subject parcellation using shrinkage-based estimators of such measures, allowing the noisy subject-specific estimator to "borrow strength" in a principled manner from a larger population of subjects. We present several empirical Bayes shrinkage estimators and outline methods for shrinkage when multiple scans are not available for each subject. We perform shrinkage on raw inter-voxel correlation estimates and use both raw and shrinkage estimates to produce parcellations by performing clustering on the voxels. While we employ a standard spectral clustering approach, our proposed method is agnostic to the choice of clustering method and can be used as a pre-processing step for any clustering algorithm. Using two datasets - a simulated dataset where the true parcellation is known and is subject-specific and a test-retest dataset consisting of two 7-minute resting-state fMRI scans from 20 subjects - we show that parcellations produced from shrinkage correlation estimates have higher reliability and validity than those produced from raw correlation estimates. Application to test-retest data shows that using shrinkage estimators increases the reproducibility of subject-specific parcellations of the motor cortex by up to 30%.


Asunto(s)
Encéfalo/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Descanso/fisiología , Algoritmos , Teorema de Bayes , Encéfalo/anatomía & histología , Mapeo Encefálico , Análisis por Conglomerados , Humanos , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Modelos Estadísticos , Corteza Motora/anatomía & histología , Corteza Motora/fisiología , Vías Nerviosas/fisiología , Reproducibilidad de los Resultados , Relación Señal-Ruido
16.
Neuroimage ; 101: 531-46, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24993894

RESUMEN

To date, most functional Magnetic Resonance Imaging (fMRI) studies have assumed that the functional connectivity (FC) between time series from distinct brain regions is constant across time. However, recently, there has been an increased interest in quantifying possible dynamic changes in FC during fMRI experiments, as it is thought that this may provide insight into the fundamental workings of brain networks. In this work we focus on the specific problem of estimating the dynamic behavior of pair-wise correlations between time courses extracted from two different regions of the brain. We critique the commonly used sliding-window technique, and discuss some alternative methods used to model volatility in the finance literature that could also prove to be useful in the neuroimaging setting. In particular, we focus on the Dynamic Conditional Correlation (DCC) model, which provides a model-based approach towards estimating dynamic correlations. We investigate the properties of several techniques in a series of simulation studies and find that DCC achieves the best overall balance between sensitivity and specificity in detecting dynamic changes in correlations. We also investigate its scalability beyond the bivariate case to demonstrate its utility for studying dynamic correlations between more than two brain regions. Finally, we illustrate its performance in an application to test-retest resting state fMRI data.


Asunto(s)
Conectoma/métodos , Interpretación Estadística de Datos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Modelos Estadísticos , Adulto , Simulación por Computador , Femenino , Humanos , Masculino , Descanso
17.
Neuroimage ; 96: 22-35, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24657780

RESUMEN

Recent studies have illustrated that motion-related artifacts remain in resting-state fMRI (rs-fMRI) data even after common corrective processing procedures have been applied, but the extent to which head motion distorts the data may be modulated by the corrective approach taken. We compare two different methods for estimating nuisance signals from tissues not expected to exhibit BOLD fMRI signals of neuronal origin: 1) the more commonly used mean signal method and 2) the principal components analysis approach (aCompCor: Behzadi et al., 2007). Further, we investigate the added benefit of "scrubbing" (Power et al., 2012) following both methods. We demonstrate that the use of aCompCor removes motion artifacts more effectively than tissue-mean signal regression. In addition, inclusion of more components from anatomically defined regions of no interest better mitigates motion-related artifacts and improves the specificity of functional connectivity estimates. While scrubbing further attenuates motion-related artifacts when mean signals are used, scrubbing provides no additional benefit in terms of motion artifact reduction or connectivity specificity when using aCompCor.


Asunto(s)
Artefactos , Mapeo Encefálico/métodos , Encéfalo/fisiología , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Movimiento , Algoritmos , Niño , Interpretación Estadística de Datos , Humanos , Masculino , Movimiento (Física) , Análisis de Componente Principal , Reproducibilidad de los Resultados , Descanso/fisiología , Sensibilidad y Especificidad , Programas Informáticos
18.
Neuroimage ; 102 Pt 2: 938-44, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24879924

RESUMEN

Resting-state functional magnetic resonance imaging (rs-fMRI) is used to investigate synchronous activations in spatially distinct regions of the brain, which are thought to reflect functional systems supporting cognitive processes. Analyses are often performed using seed-based correlation analysis, allowing researchers to explore functional connectivity between data in a seed region and the rest of the brain. Using scan-rescan rs-fMRI data, we investigate how well the subject-specific seed-based correlation map from the second replication of the study can be predicted using data from the first replication. We show that one can dramatically improve prediction of subject-specific connectivity by borrowing strength from the group correlation map computed using all other subjects in the study. Even more surprisingly, we found that the group correlation map provided a better prediction of a subject's connectivity than the individual's own data. While further discussion and experimentation are required to understand how this can be used in practice, results indicate that shrinkage-based methods that borrow strength from the population mean should play a role in rs-fMRI data analysis.


Asunto(s)
Encéfalo/fisiología , Imagen por Resonancia Magnética/estadística & datos numéricos , Red Nerviosa/fisiología , Interpretación Estadística de Datos , Predicción , Humanos , Modelos Estadísticos , Descanso
19.
Hum Brain Mapp ; 35(2): 567-80, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23118015

RESUMEN

Accumulating evidence suggests that motor impairments are prevalent in autism spectrum disorder (ASD), relate to the social and communicative deficits at the core of the diagnosis and may reflect abnormal connectivity within brain networks underlying motor control and learning. Parcellation of resting-state functional connectivity data using spectral clustering approaches has been shown to be an effective means of visualizing functional organization within the brain but has most commonly been applied to explorations of normal brain function. This article presents a parcellation of a key area of the motor network, the primary motor cortex (M1), a key area of the motor control network, in adults, typically developing (TD) children and children with ASD and introduces methods for selecting the number of parcels, matching parcels across groups and testing group differences. The parcellation is based solely on patterns of connectivity between individual M1 voxels and all voxels outside of M1, and within all groups, a gross dorsomedial to ventrolateral organization emerged within M1 which was left-right symmetric. Although this gross organizational scheme was present in both groups of children, statistically significant group differences in the size and segregation of M1 parcels within regions of the motor homunculus corresponding to the upper and lower limbs were observed. Qualitative comparison of the M1 parcellation for children with ASD with that of younger and older TD children suggests that these organizational differences, with a lack of differentiation between lower limb/trunk regions and upper limb/hand regions, may be due, at least in part, to a delay in functional specialization within the motor cortex.


Asunto(s)
Trastorno Autístico/patología , Mapeo Encefálico , Corteza Motora/fisiopatología , Adulto , Niño , Discapacidades del Desarrollo/patología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Motora/irrigación sanguínea , Oxígeno , Adulto Joven
20.
J Comput Graph Stat ; 32(2): 413-433, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377728

RESUMEN

Independent component analysis is commonly applied to functional magnetic resonance imaging (fMRI) data to extract independent components (ICs) representing functional brain networks. While ICA produces reliable group-level estimates, single-subject ICA often produces noisy results. Template ICA is a hierarchical ICA model using empirical population priors to produce more reliable subject-level estimates. However, this and other hierarchical ICA models assume unrealistically that subject effects are spatially independent. Here, we propose spatial template ICA (stICA), which incorporates spatial priors into the template ICA framework for greater estimation efficiency. Additionally, the joint posterior distribution can be used to identify brain regions engaged in each network using an excursions set approach. By leveraging spatial dependencies and avoiding massive multiple comparisons, stICA has high power to detect true effects. We derive an efficient expectation-maximization algorithm to obtain maximum likelihood estimates of the model parameters and posterior moments of the latent fields. Based on analysis of simulated data and fMRI data from the Human Connectome Project, we find that stICA produces estimates that are more accurate and reliable than benchmark approaches, and identifies larger and more reliable areas of engagement. The algorithm is computationally tractable, achieving convergence within 12 hours for whole-cortex fMRI analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA