RESUMEN
Although the mechanisms by which innate pathogen-recognition receptors enhance adaptive immune responses are increasingly well understood, whether signaling events from distinct classes of receptors affect each other in modulating adaptive immunity remains unclear. We found here that the activation of cytosolic RIG-I-like receptors (RLRs) resulted in the selective suppression of transcription of the gene encoding the p40 subunit of interleukin 12 (Il12b) that was effectively induced by the activation of Toll-like receptors (TLRs). The RLR-activated transcription factor IRF3 bound dominantly, relative to IRF5, to the Il12b promoter, where it interfered with the TLR-induced assembly of a productive transcription-factor complex. The activation of RLRs in mice attenuated TLR-induced responses of the T helper type 1 cell (T(H)1 cell) and interleukin 17-producing helper T cell (T(H)17 cell) subset types and, consequently, viral infection of mice caused death at sublethal doses of bacterial infection. The innate immune receptor cross-interference we describe may have implications for infection-associated clinical episodes.
Asunto(s)
Transducción de Señal/inmunología , Linfocitos T/inmunología , Receptores Toll-Like/inmunología , Secuencia de Aminoácidos , Animales , Infecciones Bacterianas/inmunología , Células Cultivadas , Regulación de la Expresión Génica/inmunología , Factor 3 Regulador del Interferón/metabolismo , Factores Reguladores del Interferón/metabolismo , Subunidad p40 de la Interleucina-12/metabolismo , Macrófagos Peritoneales/inmunología , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Células TH1/inmunología , Células Th17/inmunología , Factores de Transcripción/metabolismo , Virosis/inmunologíaRESUMEN
The activation of innate immune receptors by pathogen-associated molecular patterns (PAMPs) is central to host defense against infections. On the other hand, these receptors are also activated by immunogenic damage-associated molecular patterns (DAMPs), typically released from dying cells, and the activation can evoke chronic inflammatory or autoimmune disorders. One of the best known receptors involved in the immune pathogenesis is Toll-like receptor 7 (TLR7), which recognizes RNA with single-stranded structure. However, the causative DAMP RNA(s) in the pathogenesis has yet to be identified. Here, we first developed a chemical compound, termed KN69, that suppresses autoimmunity in several established mouse models. A subsequent search for KN69-binding partners led to the identification of U11 small nuclear RNA (U11snRNA) as a candidate DAMP RNA involved in TLR7-induced autoimmunity. We then showed that U11snRNA robustly activated the TLR7 pathway in vitro and induced arthritis disease in vivo. We also found a correlation between high serum level of U11snRNA and autoimmune diseases in human subjects and established mouse models. Finally, by revealing the structural basis for U11snRNA's ability to activate TLR7, we developed more potent TLR7 agonists and TLR7 antagonists, which may offer new therapeutic approaches for autoimmunity or other immune-driven diseases. Thus, our study has revealed a hitherto unknown immune function of U11snRNA, providing insight into TLR7-mediated autoimmunity and its potential for further therapeutic applications.
Asunto(s)
Glicoproteínas de Membrana/agonistas , ARN Nuclear Pequeño/inmunología , Receptor Toll-Like 7/agonistas , Adulto , Alarminas/química , Animales , Artritis Reumatoide/sangre , Artritis Reumatoide/inmunología , Enfermedades Autoinmunes/sangre , Enfermedades Autoinmunes/inmunología , Secuencia de Bases , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunosupresores/síntesis química , Inmunosupresores/farmacología , Lupus Eritematoso Sistémico/sangre , Lupus Eritematoso Sistémico/inmunología , Glicoproteínas de Membrana/deficiencia , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Persona de Mediana Edad , ARN/inmunología , ARN/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/inmunología , Análisis de Secuencia de ARN , Receptor Toll-Like 7/deficiencia , Adulto JovenRESUMEN
IFN regulatory factor 3 (IRF3) is a transcription regulator of cellular responses in many cell types that is known to be essential for innate immunity. To confirm IRF3's broad role in immunity and to more fully discern its role in various cellular subsets, we engineered Irf3-floxed mice to allow for the cell type-specific ablation of Irf3 Analysis of these mice confirmed the general requirement of IRF3 for the evocation of type I IFN responses in vitro and in vivo. Furthermore, immune cell ontogeny and frequencies of immune cell types were unaffected when Irf3 was selectively inactivated in either T cells or B cells in the mice. Interestingly, in a model of lipopolysaccharide-induced septic shock, selective Irf3 deficiency in myeloid cells led to reduced levels of type I IFN in the sera and increased survival of these mice, indicating the myeloid-specific, pathogenic role of the Toll-like receptor 4-IRF3 type I IFN axis in this model of sepsis. Thus, Irf3-floxed mice can serve as useful tool for further exploring the cell type-specific functions of this transcription factor.
Asunto(s)
Inmunidad Innata/inmunología , Inflamación/inmunología , Factor 3 Regulador del Interferón/metabolismo , Células Mieloides/inmunología , Linfocitos T/inmunología , Animales , Regulación de la Expresión Génica , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/patología , Lipopolisacáridos/toxicidad , Ratones , Ratones Noqueados , Células Mieloides/metabolismo , Células Mieloides/patología , Transducción de Señal , Linfocitos T/metabolismo , Linfocitos T/patologíaRESUMEN
The commensal microbiota within the gastrointestinal tract is essential in maintaining homeostasis. Indeed, dysregulation in the repertoire of microbiota can result in the development of intestinal immune-inflammatory diseases. Further, this immune regulation by gut microbiota is important systemically, impacting health and disease of organ systems beyond the local environment of the gut. What has not been explored is how distant organs might in turn shape the microbiota via microbe-targeted molecules. Here, we provide evidence that surfactant protein D (SP-D) synthesized in the gallbladder and delivered into intestinal lumen binds selectively to species of gut commensal bacteria. SP-D-deficient mice manifest intestinal dysbiosis and show a susceptibility to dextran sulfate sodium-induced colitis. Further, fecal transfer from SP-D-deficient mice to wild-type, germ-free mice conveyed colitis susceptibility. Interestingly, colitis caused a notable increase in Sftpd gene expression in the gallbladder, but not in the lung, via the activity of glucocorticoids produced in the liver. These findings describe a unique mechanism of interorgan regulation of intestinal immune homeostasis by SP-D with potential clinical implications such as cholecystectomy.
Asunto(s)
Colitis/metabolismo , Vesícula Biliar/metabolismo , Microbioma Gastrointestinal , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Animales , Colitis/microbiología , Factores de Transcripción Forkhead/metabolismo , Glucocorticoides/biosíntesis , Homeostasis , Mucosa Intestinal/inmunología , Hígado/metabolismo , Ratones Endogámicos C57BL , Simbiosis , Linfocitos T Reguladores/metabolismoRESUMEN
Cellular components released into the external milieu as a result of cell death and sensed by the body are generally termed damage-associated molecular patterns (DAMPs). Although DAMPs are conventionally thought to be protective to the host by evoking inflammatory responses important for immunity and wound repair, there is the prevailing notion that dysregulated release of DAMPs can also underlie or exacerbate disease development. However, the critical issue for how resultant DAMP-mediated responses are regulated has heretofore not been fully addressed. In the present study, we identify prostaglandin E2 (PGE2) as a DAMP that negatively regulates immune responses. We show that the production of PGE2 is augmented under cell death-inducing conditions via the transcriptional induction of the cyclooxygenase 2 (COX2) gene and that cell-released PGE2 suppresses the expression of genes associated with inflammation, thereby limiting the cell's immunostimulatory activities. Consistent with this, inhibition of the PGE2 synthesis pathway potentiates the inflammation induced by dying cells. We also provide in vivo evidence for a protective role of PGE2 released upon acetaminophen-induced liver injury as well as a pathogenic role for PGE2 during tumor cell growth. Our study places this classically known lipid mediator in an unprecedented context-that is, an inhibitory DAMP vis-à-vis activating DAMPs, which may have translational implications for designing more effective therapeutic regimens for inflammation-associated diseases.
Asunto(s)
Alarminas/metabolismo , Muerte Celular/inmunología , Ciclooxigenasa 2/biosíntesis , Dinoprostona/metabolismo , Inflamación/patología , Acetaminofén/efectos adversos , Animales , Muerte Celular/fisiología , Línea Celular Tumoral , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Células HeLa , Humanos , Inflamación/inmunología , Lipopolisacáridos , Ratones , Ratones Endogámicos C57BLRESUMEN
Tumor metastasis is the cause of most cancer deaths. Although metastases can form in multiple end organs, the liver is recognized as a highly permissive organ. Nevertheless, there is evidence for immune cell-mediated mechanisms that function to suppress liver metastasis by certain tumors, although the underlying mechanisms for the suppression of metastasis remain elusive. Here, we show that Dectin-2, a C-type lectin receptor (CLR) family of innate receptors, is critical for the suppression of liver metastasis of cancer cells. We provide evidence that Dectin-2 functions in resident macrophages in the liver, known as Kupffer cells, to mediate the uptake and clearance of cancer cells. Interestingly, Kupffer cells are selectively endowed with Dectin-2-dependent phagocytotic activity, with neither bone marrow-derived macrophages nor alveolar macrophages showing this potential. Concordantly, subcutaneous primary tumor growth and lung metastasis are not affected by the absence of Dectin-2. In addition, macrophage C-type lectin, a CLR known to be complex with Dectin-2, also contributes to the suppression of liver metastasis. Collectively, these results highlight the hitherto poorly understood mechanism of Kupffer cell-mediated control of metastasis that is mediated by the CLR innate receptor family, with implications for the development of anticancer therapy targeting CLRs.
Asunto(s)
Macrófagos del Hígado/fisiología , Lectinas Tipo C/metabolismo , Neoplasias Hepáticas Experimentales/secundario , Metástasis de la Neoplasia/inmunología , Fagocitosis , Animales , Línea Celular Tumoral , Humanos , Lectinas Tipo C/genética , Ratones Endogámicos C57BL , Receptores Inmunológicos/metabolismoRESUMEN
Blunting immunopathology without abolishing host defense is the foundation for safe and effective modulation of infectious and autoimmune diseases. Sphingosine 1-phosphate receptor 1 (S1PR1) agonists are effective in treating infectious and multiple autoimmune pathologies; however, mechanisms underlying their clinical efficacy are yet to be fully elucidated. Here, we uncover an unexpected mechanism of convergence between S1PR1 and interferon alpha receptor 1 (IFNAR1) signaling pathways. Activation of S1PR1 signaling by pharmacological tools or endogenous ligand sphingosine-1 phosphate (S1P) inhibits type 1 IFN responses that exacerbate numerous pathogenic conditions. Mechanistically, S1PR1 selectively suppresses the type I IFN autoamplification loop in plasmacytoid dendritic cells (pDCs), a specialized DC subset, for robust type I IFN release. S1PR1 agonist suppression is pertussis toxin-resistant, but inhibited by an S1PR1 C-terminal-derived transactivating transcriptional activator (Tat)-fusion peptide that blocks receptor internalization. S1PR1 agonist treatment accelerates turnover of IFNAR1, suppresses signal transducer and activator of transcription 1 (STAT1) phosphorylation, and down-modulates total STAT1 levels, thereby inactivating the autoamplification loop. Inhibition of S1P-S1PR1 signaling in vivo using the selective antagonist Ex26 significantly elevates IFN-α production in response to CpG-A. Thus, multiple lines of evidence demonstrate that S1PR1 signaling sets the sensitivity of pDC amplification of IFN responses, thereby blunting pathogenic immune responses. These data illustrate a lipid G-protein coupled receptor (GPCR)-IFNAR1 regulatory loop that balances effective and detrimental immune responses and elevated endogenous S1PR1 signaling. This mechanism will likely be advantageous in individuals subject to a range of inflammatory conditions.
Asunto(s)
Células Dendríticas/metabolismo , Interferón-alfa/metabolismo , Receptor de Interferón alfa y beta/metabolismo , Receptores de Lisoesfingolípidos/fisiología , Animales , Ratones , Ratones Noqueados , Proteolisis , Receptor de Interferón alfa y beta/genéticaRESUMEN
Recent years have seen a number of regulatory approvals for immune oncology or immunotherapies based on their ability to enhance antitumor immune responses. Nevertheless, the majority of patients remain refractory to these treatments; hence, new therapies that augment current immunotherapies are required. Innate immune receptors that recognize nucleic acids are potent activators of subsequent T-cell responses and, as a result, can evoke potent antitumor immune responses. Herein, we present a novel compound N-{3-[(1,4'-bipiperidin)-1'-yl]propyl}-6-[4-(4-methylpiperazin-1-yl)phenyl]picolinamide (SINCRO; STING-mediated interferon-inducing and cytotoxic reagent, original) as an anticancer drug that activates the cytosolic DNA-sensing STING (stimulator of interferon genes) signaling pathway leading to the induction of type I interferon (IFN) genes. Indeed, IFN-ß gene induction by SINCRO is abolished in STING-deficient cells. In addition to its IFN-inducing activity, SINCRO shows STING-independent cytotoxic activity against cancer cells. SINCRO does not evoke DNA double-strand break or caspase-3 cleavage. Thus, SINCRO induces cell death in a method different from conventional apoptosis-inducing pathways. Finally, we provide evidence that giving SINCRO significantly attenuates in vivo tumor growth by both type I IFN-dependent and independent mechanisms. Thus, SINCRO is an attractive anticancer compound with dual function in that it evokes type I IFN response to promote antitumor immunity as well as inducing tumor cell death. SINCRO may provide a new platform for the development of drugs for effective cancer therapy.
Asunto(s)
Amidas/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Interferón beta/biosíntesis , Proteínas de la Membrana/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Ácidos Picolínicos/farmacología , Piperidinas/farmacología , Células 3T3 , Amidas/química , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Células HEK293 , Células HeLa , Humanos , Interferón beta/genética , Interferón beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias/patología , Ácidos Picolínicos/química , Piperidinas/química , Transducción de Señal/efectos de los fármacosRESUMEN
The regulation of intestinal homeostasis by the immune system involves the dynamic interplay between gut commensal microbiota and resident immune cells. It is well known that a large and diverse lymphocyte antigen receptor repertoire enables the immune system to recognize and respond to a wide range of invading pathogens. There is also an emerging appreciation for a critical role the T-cell receptor (TCR) repertoire serves in the maintenance of peripheral tolerance by regulatory T cells (Tregs). Nevertheless, how the diversity of the TCR repertoire in Tregs affects intestinal homeostasis remains unknown. To address this question, we studied mice whose T cells express a restricted TCR repertoire. We observed the development of spontaneous colitis, accompanied by the induction of T-helper type 17 cells in the colon that is driven by gut commensal microbiota. We provide further evidence that a restricted TCR repertoire causes a loss of tolerogenicity to microbiota, accompanied by a paucity of peripherally derived, Helios(-) Tregs and hyperactivation of migratory dendritic cells. These results thus reveal a new facet of the TCR repertoire in which Tregs require a diverse TCR repitoire for intestinal homeostasis, suggesting an additional driving force in the evolutional significance of the TCR repertoire.
Asunto(s)
Movimiento Celular/inmunología , Colon/inmunología , Microbiota/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Animales , Movimiento Celular/genética , Colon/microbiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Células Dendríticas/inmunología , Ratones , Ratones Mutantes , Receptores de Antígenos de Linfocitos T/genética , Factores de Transcripción/genética , Factores de Transcripción/inmunologíaRESUMEN
High-mobility group box 1 (HMGB1) is a DNA-binding protein abundantly expressed in the nucleus that has gained much attention for its regulation of immunity and inflammation. Despite this, whether and how HMGB1 contributes to protective and/or pathological responses in vivo is unclear. In this study, we constructed Hmgb1-floxed (Hmgb1(f)(/f)) mice to achieve the conditional inactivation of the gene in a cell- and tissue-specific manner by crossing these mice with an appropriate Cre recombinase transgenic strain. Interestingly, although mice with HMGB1 ablation in myeloid cells apparently develop normally, they are more sensitive to endotoxin shock compared with control mice, which is accompanied by massive macrophage cell death. Furthermore, these mice also show an increased sensitivity to Listeria monocytogenes infection. We also provide evidence that the loss of HMGB1 in macrophages results in the suppression of autophagy, which is commonly induced by lipopolysaccharide stimulation or L. monocytogenes infection. Thus, intracellular HMGB1 contributes to the protection of mice from endotoxemia and bacterial infection by mediating autophagy in macrophages. These newly generated HMGB1 conditional knockout mice will serve a useful tool with which to study further the in vivo role of this protein in various pathological conditions.
Asunto(s)
Endotoxemia/inmunología , Proteína HMGB1/inmunología , Inmunidad Innata , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Macrófagos/inmunología , Animales , Autofagia/genética , Autofagia/inmunología , Línea Celular , Endotoxemia/genética , Endotoxemia/metabolismo , Endotoxemia/patología , Eliminación de Gen , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Listeriosis/genética , Listeriosis/metabolismo , Listeriosis/patología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones TransgénicosRESUMEN
A major function of innate immune receptors is to recognize pathogen-associated molecular patterns and then evoke immune responses appropriate to the nature of the invading pathogen(s). Because innate immune cells express various types of these receptors, distinct combinations of signaling pathways are activated in response to a given pathogen. Although the conventional wisdom is that these signaling pathways cooperate with one another to ensure an effective host response, a more nuanced view recognizes antagonism between the individual pathways, where the attenuation of a signaling pathway(s) by others may shape the immune response. In this study, we show that, on Listeria monocytogenes infection, Toll-like receptor-triggered MyD88 signaling pathways suppress type I IFN gene induction, which is detrimental to macrophage bactericidal activity. These pathways target and suppress the IFN regulatory factor 3 (IRF3) transcription factor that is activated by the stimulator of IFN genes-TANK-binding kinase-1 kinase pathway. We also provide evidence for the involvement of the MAPK phosphatase family members, which renders IRF3 hypophosphorylated on Toll-like receptor signaling by enhancing the formation of an MAPK phosphatase-IRF3-TANK-binding kinase-1 ternary complex. This study, therefore, reveals a hitherto unrecognized and important contribution of a beneficial innate signaling interference against bacterial infections.
Asunto(s)
Inmunidad Innata/inmunología , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Complejos Multiproteicos/inmunología , Transducción de Señal/inmunología , Receptores Toll-Like/metabolismo , Animales , Ensayo de Unidades Formadoras de Colonias , Fosfatasa 1 de Especificidad Dual/metabolismo , Immunoblotting , Inmunoprecipitación , Factor 3 Regulador del Interferón/antagonistas & inhibidores , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/antagonistas & inhibidores , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multiproteicos/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
The activation of innate immune responses by nucleic acids is crucial to protective and pathological immunities and is mediated by the transmembrane Toll-like receptors (TLRs) and cytosolic receptors. However, it remains unknown whether a mechanism exists that integrates these nucleic-acid-sensing systems. Here we show that high-mobility group box (HMGB) proteins 1, 2 and 3 function as universal sentinels for nucleic acids. HMGBs bind to all immunogenic nucleic acids examined with a correlation between affinity and immunogenic potential. Hmgb1(-/-) and Hmgb2(-/-) mouse cells are defective in type-I interferon and inflammatory cytokine induction by DNA or RNA targeted to activate the cytosolic nucleic-acid-sensing receptors; cells in which the expression of all three HMGBs is suppressed show a more profound defect, accompanied by impaired activation of the transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor (NF)-kappaB. The absence of HMGBs also severely impairs the activation of TLR3, TLR7 and TLR9 by their cognate nucleic acids. Our results therefore indicate a hierarchy in the nucleic-acid-mediated activation of immune responses, wherein the selective activation of nucleic-acid-sensing receptors is contingent on the more promiscuous sensing of nucleic acids by HMGBs. These findings may have implications for understanding the evolution of the innate immune system and for the treatment of immunological disorders.
Asunto(s)
Proteínas HMGB/inmunología , Proteínas HMGB/metabolismo , Inmunidad Innata/inmunología , Ácidos Nucleicos/inmunología , Animales , Línea Celular , Citosol/inmunología , ADN/inmunología , Proteínas HMGB/deficiencia , Proteínas HMGB/genética , Proteína HMGB1/deficiencia , Proteína HMGB1/genética , Proteína HMGB1/inmunología , Proteína HMGB1/metabolismo , Proteína HMGB2/deficiencia , Proteína HMGB2/genética , Proteína HMGB2/inmunología , Proteína HMGB2/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Inmunológicos , FN-kappa B/metabolismo , Nucleótidos/química , Nucleótidos/inmunología , Nucleótidos/metabolismo , ARN/inmunología , Transducción de Señal , Receptores Toll-Like/inmunología , Virosis/inmunología , Virosis/virologíaRESUMEN
The large intestinal epithelial cells and immune cells are exposed to a variety of molecules derived from commensal microbiota that can activate innate receptors, such as Toll-like receptors (TLRs) and retinoic acid-inducible gene-I-like receptors (RLRs). Although the activation of these receptors is known to be critical for homeostasis of the large intestine, the underlying gene regulatory mechanisms are not well understood. Here, we show that IFN regulatory factor (IRF)3 is critical for the suppression of dextran sulfate sodium-induced colitis. IRF3-deficient mice exhibited lethal defects in the inflammatory and recovery phases of the colitis, accompanied by marked defects in the gene induction for thymic stromal lymphopoietin (TSLP), a cytokine known to be essential for protection of the large intestine. We further provide evidence that DNA and RNA of the large intestinal contents are critical for Tslp gene induction via IRF3 activation by cytosolic nucleic acid receptors. We also demonstrate that IRF3 indeed activates the gene promoter of Tslp via IRF-binding sequences. This newly identified intestinal gene regulatory mechanism, wherein IRF3 activated by microbiota-derived nucleic acids plays a critical role in intestinal homeostasis, may have clinical implication in colonic inflammatory disorders.
Asunto(s)
Citocinas/genética , Regulación Bacteriana de la Expresión Génica , Factor 3 Regulador del Interferón/fisiología , Intestinos/microbiología , Metagenoma , Animales , Colitis/microbiología , Citocinas/metabolismo , Citosol/metabolismo , ADN/metabolismo , Homeostasis , Factor 3 Regulador del Interferón/genética , Ratones , Modelos Biológicos , ARN/metabolismo , Tretinoina/metabolismo , Linfopoyetina del Estroma TímicoRESUMEN
The regulation of the Il12b gene, encoding the shared p40 subcomponent for IL-12 and IL-23, is critical for innate immune responses and subsequent T cell polarization. This gene is robustly induced upon Toll-like receptor (TLR) stimulation, wherein an enhancer located 10kb upstream of the transcription start site is required for promoter activity; however, the underlying mechanisms that regulate this enhancer in cooperation with the promoter has remained elusive. We show here that the Il12b enhancer contains functional ISREs for recognition by interferon regulatory factors (IRFs), and provide evidence that TLR-activated IRF5 mediates cooperativity of the enhancer with the promoter which also contains ISREs. By contrast, IRF3 activated by cytosolic RIG-I-like receptor (RLR) signaling binds to these ISREs and causes gene suppression. Consistently, IRF5 binding is accompanied with chromatin remodeling of both regulatory regions and the formation of a productive transcriptional complex containing other transcription factors, whereas these events are inhibited by IRF3 binding. We show that the ISREs embedded in the enhancer are indeed critical for its activation by IRF5. We also adduce evidence that the 5' sequences of the enhancer and promoter ISREs, all of which deviate from consensus ISREs, critically affect the function of IRF3. The dual commitment of these IRFs in the regulation of the Il12b enhancer and promoter is unique and may have implications for understanding the evolution of this gene.
Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Factor 3 Regulador del Interferón/metabolismo , Factores Reguladores del Interferón/metabolismo , Subunidad p40 de la Interleucina-12/genética , Regiones Promotoras Genéticas , Secuencia de Bases , Evolución Molecular , Células HEK293 , Humanos , Datos de Secuencia Molecular , Receptores Toll-LikeRESUMEN
Central to innate immunity is the sensing of pathogen-associated molecular patterns by cytosolic and membrane-associated receptors. In particular, DNA is a potent activator of immune responses during infection or tissue damage, and evidence indicates that, in addition to the membrane-associated Toll-like receptor 9, an unidentified cytosolic DNA sensor(s) can activate type I interferon (IFN) and other immune responses. Here we report on a candidate DNA sensor, previously named DLM-1 (also called Z-DNA binding protein 1 (ZBP1)), for which biological function had remained unknown; we now propose the alternative name DAI (DNA-dependent activator of IFN-regulatory factors). The artificial expression of otherwise IFN-inducible DAI (DLM-1/ZBP1) in mouse fibroblasts selectively enhances the DNA-mediated induction of type I IFN and other genes involved in innate immunity. On the other hand, RNA interference of messenger RNA for DAI (DLM-1/ZBP1) in cells inhibits this gene induction programme upon stimulation by DNA from various sources. Moreover, DAI (DLM-1/ZBP1) binds to double-stranded DNA and, by doing so, enhances its association with the IRF3 transcription factor and the TBK1 serine/threonine kinase. These observations underscore an integral role of DAI (DLM-1/ZBP1) in the DNA-mediated activation of innate immune responses, and may offer new insight into the signalling mechanisms underlying DNA-associated antimicrobial immunity and autoimmune disorders.
Asunto(s)
Citosol/metabolismo , ADN/inmunología , Glicoproteínas/inmunología , Inmunidad Innata/inmunología , Animales , Línea Celular , Citoplasma/genética , Citoplasma/inmunología , Citoplasma/metabolismo , Citosol/inmunología , ADN/metabolismo , Fibroblastos , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Ratones , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al ARNRESUMEN
The activation of the innate immune responses by DNA exposed within the cytosol has gained much attention and, in this context, several cytosolic DNA sensors have been identified. However, previous studies revealed the operation of redundant and complex mechanisms and it still remains to be clarified how the DNA-mediated evocation of diverse innate immune responses can be achieved. Here we show that two RIG-I-like receptors (RLRs), RIG-I and MDA5, known as cytosolic RNA receptors, nonredundantly function as cytosolic DNA receptors that lead to the selective activation of type I IFN genes. We demonstrate that overexpression of otherwise IFN-inducible RIG-I or MDA5 in IFN signal-deficient cells results in a marked enhancement of type I IFN gene induction upon cytosolic DNA stimulation, while in their absence the induction is impaired. Interestingly, the DNA-mediated induction of other cytokine genes was barely affected by the absence of RLRs. Indeed, unlike the RNA-RLR pathway that activates the transcription factors IRF3 and NF-kappaB, the DNA-RLR pathway is primarily responsible for the IRF3 activation critical for type I IFN gene transcription, illustrating a deliberate divergence of the DNA signaling pathways. Expectedly, the RLR pathway also contributes to intricate innate immune responses against infection by a DNA virus. Our study may provide insights into the complexity of host defense mechanisms that thwart immune evasion by DNA-containing pathogens.
Asunto(s)
ARN Helicasas DEAD-box/metabolismo , ADN/genética , ADN/inmunología , Inmunidad Innata , Interferón Tipo I/genética , Animales , Línea Celular , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/deficiencia , ARN Helicasas DEAD-box/genética , Virus ADN/genética , Virus ADN/inmunología , ADN Viral/genética , ADN Viral/inmunología , Células HeLa , Humanos , Inmunidad Innata/genética , Helicasa Inducida por Interferón IFIH1 , Ratones , Ratones Noqueados , ARN/genética , ARN/inmunología , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal , Regulación hacia ArribaRESUMEN
Adjuvants are important vaccine components, composed of a variety of chemical and biological materials that enhance the vaccine antigen-specific immune responses by stimulating the innate immune cells in both direct and indirect manners to produce a variety cytokines, chemokines, and growth factors. It has been developed by empirical methods for decades and considered difficult to choose a single screening method for an ideal vaccine adjuvant, due to their diverse biochemical characteristics, complex mechanisms of, and species specificity for their adjuvanticity. We therefore established a robust adjuvant screening strategy by combining multiparametric analysis of adjuvanticity in vivo and immunological profiles in vitro (such as cytokines, chemokines, and growth factor secretion) of various library compounds derived from hot-water extracts of herbal medicines, together with their diverse distribution of nano-sized physical particle properties with a machine learning algorithm. By combining multiparametric analysis with a machine learning algorithm such as rCCA, sparse-PLS, and DIABLO, we identified that human G-CSF and mouse RANTES, produced upon adjuvant stimulation in vitro, are the most robust biological parameters that can predict the adjuvanticity of various library compounds. Notably, we revealed a certain nano-sized particle population that functioned as an independent negative parameter to adjuvanticity. Finally, we proved that the two-step strategy pairing the negative and positive parameters significantly improved the efficacy of screening and a screening strategy applying principal component analysis using the identified parameters. These novel parameters we identified for adjuvant screening by machine learning with multiple biological and physical parameters may provide new insights into the future development of effective and safe adjuvants for human use.
Asunto(s)
Adyuvantes de Vacunas , Vacunas , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacología , Adyuvantes Farmacéuticos , Animales , Citocinas , Medicina de Hierbas , Aprendizaje Automático , RatonesRESUMEN
The type-I interferon (IFN-alpha/beta) response is critical to immunity against viruses and can be triggered in many cell types by cytosolic detection of viral infection, or in differentiated plasmacytoid dendritic cells by the Toll-like receptor 9 (TLR9) subfamily, which generates signals via the adaptor MyD88 to elicit robust IFN induction. Using mice deficient in the Irf7 gene (Irf7-/- mice), we show that the transcription factor IRF-7 is essential for the induction of IFN-alpha/beta genes via the virus-activated, MyD88-independent pathway and the TLR-activated, MyD88-dependent pathway. Viral induction of MyD88-independent IFN-alpha/beta genes is severely impaired in Irf7-/- fibroblasts. Consistently, Irf7-/- mice are more vulnerable than Myd88-/- mice to viral infection, and this correlates with a marked decrease in serum IFN levels, indicating the importance of the IRF-7-dependent induction of systemic IFN responses for innate antiviral immunity. Furthermore, robust induction of IFN production by activation of the TLR9 subfamily in plasmacytoid dendritic cells is entirely dependent on IRF-7, and this MyD88-IRF-7 pathway governs the induction of CD8+ T-cell responses. Thus, all elements of IFN responses, whether the systemic production of IFN in innate immunity or the local action of IFN from plasmacytoid dendritic cells in adaptive immunity, are under the control of IRF-7.
Asunto(s)
Proteínas de Unión al ADN/metabolismo , Interferón Tipo I/inmunología , Virosis/inmunología , Proteínas Adaptadoras Transductoras de Señales , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Linfocitos T CD8-positivos/inmunología , Islas de CpG/genética , Islas de CpG/inmunología , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/virología , Fibroblastos , Regulación de la Expresión Génica , Inmunidad Innata/inmunología , Factor 7 Regulador del Interferón , Proteínas de la Membrana/farmacología , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Receptor Toll-Like 9 , Virosis/genéticaRESUMEN
Robust type-I interferon (IFN-alpha/beta) induction in plasmacytoid dendritic cells, through the activation of Toll-like receptor 9 (TLR9), constitutes a critical aspect of immunity. It is absolutely dependent on the transcription factor IRF-7, which interacts with and is activated by the adaptor MyD88. How plasmacytoid dendritic cells, but not other cell types (such as conventional dendritic cells), are able to activate the MyD88-IRF-7-dependent IFN induction pathway remains unknown. Here we show that the spatiotemporal regulation of MyD88-IRF-7 signalling is critical for a high-level IFN induction in response to TLR9 activation. The IFN-inducing TLR9 ligand, A/D-type CpG oligodeoxynucleotide (CpG-A), is retained for long periods in the endosomal vesicles of plasmacytoid dendritic cells, together with the MyD88-IRF-7 complex. However, in conventional dendritic cells, CpG-A is rapidly transferred to lysosomal vesicles. We further show that conventional dendritic cells can also mount a robust IFN induction if CpG-A is manipulated for endosomal retention using a cationic lipid. This strategy also allows us to demonstrate endosomal activation of the IFN pathway by the otherwise inactive TLR9 ligand B/K-type oligodeoxynucleotide (CpG-B). Thus, our study offers insights into the regulation of TLR9 signalling in space, potentially suggesting a new avenue for therapeutic intervention.
Asunto(s)
Antígenos de Diferenciación/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Interferón Tipo I/inmunología , Receptores Inmunológicos/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Animales , Antígenos de Diferenciación/genética , Transporte Biológico , Células de la Médula Ósea/citología , Línea Celular , Islas de CpG/genética , Proteínas de Unión al ADN/genética , Células Dendríticas/clasificación , Células Dendríticas/citología , Endosomas/metabolismo , Factor 7 Regulador del Interferón , Interferón Tipo I/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Factor 88 de Diferenciación Mieloide , Receptores de Superficie Celular/metabolismo , Receptores Inmunológicos/genética , Factores de Tiempo , Receptor Toll-Like 9RESUMEN
The activation of Toll-like receptors (TLRs) is central to innate and adaptive immunity. All TLRs use the adaptor MyD88 for signalling, but the mechanisms underlying the MyD88-mediated gene induction programme are as yet not fully understood. Here, we demonstrate that the transcription factor IRF-5 is generally involved downstream of the TLR-MyD88 signalling pathway for gene induction of proinflammatory cytokines, such as interleukin-6 (IL-6), IL-12 and tumour-necrosis factor-alpha. In haematopoietic cells from mice deficient in the Irf5 gene (Irf5-/- mice), the induction of these cytokines by various TLR ligands is severely impaired, whereas interferon-alpha induction is normal. We also provide evidence that IRF-5 interacts with and is activated by MyD88 and TRAF6, and that TLR activation results in the nuclear translocation of IRF-5 to activate cytokine gene transcription. Consistently, Irf5-/- mice show resistance to lethal shock induced by either unmethylated DNA or lipopolysaccharide, which correlates with a marked decrease in the serum levels of proinflammatory cytokines. Thus, our study identifies IRF-5 as a new, principal downstream regulator of the TLR-MyD88 signalling pathway and a potential target of therapeutic intervention to control harmful immune responses.