Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Cell Sci ; 129(5): 971-82, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26763909

RESUMEN

Degradation of cellular material by autophagy is essential for cell survival and homeostasis, and requires intracellular transport of autophagosomes to encounter acidic lysosomes through unknown mechanisms. Here, we identify the PX-domain-containing kinesin Klp98A as a new regulator of autophagosome formation, transport and maturation in Drosophila. Depletion of Klp98A caused abnormal clustering of autophagosomes and lysosomes at the cell center and reduced the formation of starvation-induced autophagic vesicles. Reciprocally, overexpression of Klp98A redistributed autophagic vesicles towards the cell periphery. These effects were accompanied by reduced autophagosome-lysosome fusion and autophagic degradation. In contrast, depletion of the conventional kinesin heavy chain caused a similar mislocalization of autophagosomes without perturbing their fusion with lysosomes, indicating that vesicle fusion and localization are separable and independent events. Klp98A-mediated fusion required the endolysosomal GTPase Rab14, which interacted and colocalized with Klp98A, and required Klp98A for normal localization. Thus, Klp98A coordinates the movement and fusion of autophagic vesicles by regulating their positioning and interaction with the endolysosomal compartment.


Asunto(s)
Autofagosomas/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Cinesinas/fisiología , Lisosomas/fisiología , Proteínas de Unión al GTP rab/fisiología , Animales , Autofagia , Línea Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Unión Proteica , Transporte de Proteínas , Proteolisis , Vesículas Transportadoras/metabolismo
2.
Adv Sci (Weinh) ; 11(3): e2303317, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38018294

RESUMEN

Vitrification-based cryopreservation is a promising approach to achieving long-term storage of biological systems for maintaining biodiversity, healthcare, and sustainable food production. Using the "cryomesh" system achieves rapid cooling and rewarming of biomaterials, but further improvement in cooling rates is needed to increase biosystem viability and the ability to cryopreserve new biosystems. Improved cooling rates and viability are possible by enabling conductive cooling through cryomesh. Conduction-dominated cryomesh improves cooling rates from twofold to tenfold (i.e., 0.24 to 1.2 × 105  °C min-1 ) in a variety of biosystems. Higher thermal conductivity, smaller mesh wire diameter and pore size, and minimizing the nitrogen vapor barrier (e.g., vertical plunging in liquid nitrogen) are key parameters to achieving improved vitrification. Conduction-dominated cryomesh successfully vitrifies coral larvae, Drosophila embryos, and zebrafish embryos with improved outcomes. Not only a theoretical foundation for improved vitrification in µm to mm biosystems but also the capability to scale up for biorepositories and/or agricultural, aquaculture, or scientific use are demonstrated.


Asunto(s)
Vitrificación , Pez Cebra , Animales , Criopreservación , Frío , Nitrógeno
3.
J Cell Biol ; 216(2): 441-461, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28100687

RESUMEN

Autophagy plays an essential role in the cellular homeostasis of neurons, facilitating the clearance of cellular debris. This clearance process is orchestrated through the assembly, transport, and fusion of autophagosomes with lysosomes for degradation. The motor protein dynein drives autophagosome motility from distal sites of assembly to sites of lysosomal fusion. In this study, we identify the scaffold protein CKA (connector of kinase to AP-1) as essential for autophagosome transport in neurons. Together with other core components of the striatin-interacting phosphatase and kinase (STRIPAK) complex, we show that CKA associates with dynein and directly binds Atg8a, an autophagosomal protein. CKA is a regulatory subunit of PP2A, a component of the STRIPAK complex. We propose that the STRIPAK complex modulates dynein activity. Consistent with this hypothesis, we provide evidence that CKA facilitates axonal transport of dense core vesicles and autophagosomes in a PP2A-dependent fashion. In addition, CKA-deficient flies exhibit PP2A-dependent motor coordination defects. CKA function within the STRIPAK complex is crucial to prevent transport defects that may contribute to neurodegeneration.


Asunto(s)
Autofagosomas/enzimología , Transporte Axonal , Axones/enzimología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Complejos Multiproteicos/metabolismo , Proteína Fosfatasa 2/metabolismo , Vesículas Secretoras/enzimología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Modificados Genéticamente , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Dineínas/genética , Dineínas/metabolismo , Genotipo , Microscopía Fluorescente , Complejos Multiproteicos/genética , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Terminales Presinápticos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteína Fosfatasa 2/genética , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Transfección
4.
Methods Cell Biol ; 131: 277-309, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26794520

RESUMEN

Proper neuronal function critically depends on efficient intracellular transport and disruption of transport leads to neurodegeneration. Molecular pathways that support or regulate neuronal transport are not fully understood. A greater understanding of these pathways will help reveal the pathological mechanisms underlying disease. Drosophila melanogaster is the premier model system for performing large-scale genetic functional screens. Here we describe methods to carry out primary and secondary genetic screens in Drosophila aimed at identifying novel gene products and pathways that impact neuronal intracellular transport. These screens are performed using whole animal or live cell imaging of intact neural tissue to ensure integrity of neurons and their cellular environment. The primary screen is used to identify gross defects in neuronal function indicative of a disruption in microtubule-based transport. The secondary screens, conducted in both motoneurons and dendritic arborization neurons, will confirm the function of candidate gene products in intracellular transport. Together, the methodologies described here will support labs interested in identifying and characterizing gene products that alter intracellular transport in Drosophila.


Asunto(s)
Transporte Axonal/genética , Axones/metabolismo , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Transporte Axonal/fisiología , Dendritas/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Complejo Dinactina , Dineínas/genética , Larva/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Enfermedades Neurodegenerativas/patología , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética
5.
Mol Biol Cell ; 24(9): 1420-33, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23468526

RESUMEN

RhoA, a small GTPase, regulates epithelial integrity and morphogenesis by controlling filamentous actin assembly and actomyosin contractility. Another important cytoskeletal regulator, Moesin (Moe), an ezrin, radixin, and moesin (ERM) protein, has the ability to bind to and organize cortical F-actin, as well as the ability to regulate RhoA activity. ERM proteins have previously been shown to interact with both RhoGEF (guanine nucleotide exchange factors) and RhoGAP (GTPase activating proteins), proteins that control the activation state of RhoA, but the functions of these interactions remain unclear. We demonstrate that Moe interacts with an unusual RhoGAP, Conundrum (Conu), and recruits it to the cell cortex to negatively regulate RhoA activity. In addition, we show that cortically localized Conu can promote cell proliferation and that this function requires RhoGAP activity. Surprisingly, Conu's ability to promote growth also appears dependent on increased Rac activity. Our results reveal a molecular mechanism by which ERM proteins control RhoA activity and suggest a novel linkage between the small GTPases RhoA and Rac in growth control.


Asunto(s)
Proliferación Celular , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Proteínas Activadoras de GTPasa/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Forma de la Célula , Supervivencia Celular , Ojo Compuesto de los Artrópodos/metabolismo , Drosophila melanogaster/citología , Células Epiteliales/fisiología , Epitelio/metabolismo , Femenino , Proteínas Activadoras de GTPasa/genética , Discos Imaginales/metabolismo , Masculino , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Estabilidad Proteica , Transporte de Proteínas
6.
Curr Opin Cell Biol ; 23(4): 377-82, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21592758

RESUMEN

The cell cortex serves as a critical nexus between the extracellular environment/cell membrane and the underlying cytoskeleton and cytoplasm. In many cells, the cell cortex is organized and maintained by the Ezrin, Radixin and Moesin (ERM) proteins, which have the ability to interact with both the plasma membrane and filamentous actin. Although this membrane-cytoskeletal linkage function is critical to stability of the cell cortex, recent studies indicate that this is only a part of what ERMs do in many cells. In addition to their role in binding filamentous actin, ERMs regulate signaling pathways through their ability to bind transmembrane receptors and link them to downstream signaling components. In this review we discuss recent evidence in a variety of cells indicating that ERMs serve as scaffolds to facilitate efficient signal transduction on the cytoplasmic face of the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Transducción de Señal , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Proteínas Portadoras/metabolismo , Citoesqueleto/metabolismo , Humanos
7.
J Cell Biol ; 189(2): 311-23, 2010 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-20404112

RESUMEN

Precisely controlled growth and morphogenesis of developing epithelial tissues require coordination of multiple factors, including proliferation, adhesion, cell shape, and apoptosis. RhoA, a small GTPase, is known to control epithelial morphogenesis and integrity through its ability to regulate the cytoskeleton. In this study, we examine a less well-characterized RhoA function in cell survival. We demonstrate that the Drosophila melanogaster RhoA, Rho1, promotes apoptosis independently of Rho kinase through its effects on c-Jun NH(2)-terminal kinase (JNK) signaling. In addition, Rho1 forms a complex with Slipper (Slpr), an upstream activator of the JNK pathway. Loss of Moesin (Moe), an upstream regulator of Rho1 activity, results in increased levels of Rho1 at the plasma membrane and cortical accumulation of Slpr. Together, these results suggest that Rho1 functions at the cell cortex to regulate JNK activity and implicate Rho1 and Moe in epithelial cell survival.


Asunto(s)
Apoptosis/fisiología , Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Transducción de Señal/fisiología , Proteínas de Unión al GTP rho/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/fisiología , Activación Enzimática , Células Epiteliales/citología , Células Epiteliales/fisiología , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Interferencia de ARN , Alas de Animales/anatomía & histología , Alas de Animales/fisiología , Proteínas de Unión al GTP rho/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA