Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 180(5): 862-877.e22, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142679

RESUMEN

Using untargeted metabolomics (n = 1,162 subjects), the plasma metabolite (m/z = 265.1188) phenylacetylglutamine (PAGln) was discovered and then shown in an independent cohort (n = 4,000 subjects) to be associated with cardiovascular disease (CVD) and incident major adverse cardiovascular events (myocardial infarction, stroke, or death). A gut microbiota-derived metabolite, PAGln, was shown to enhance platelet activation-related phenotypes and thrombosis potential in whole blood, isolated platelets, and animal models of arterial injury. Functional and genetic engineering studies with human commensals, coupled with microbial colonization of germ-free mice, showed the microbial porA gene facilitates dietary phenylalanine conversion into phenylacetic acid, with subsequent host generation of PAGln and phenylacetylglycine (PAGly) fostering platelet responsiveness and thrombosis potential. Both gain- and loss-of-function studies employing genetic and pharmacological tools reveal PAGln mediates cellular events through G-protein coupled receptors, including α2A, α2B, and ß2-adrenergic receptors. PAGln thus represents a new CVD-promoting gut microbiota-dependent metabolite that signals via adrenergic receptors.


Asunto(s)
Enfermedades Cardiovasculares/sangre , Microbioma Gastrointestinal/genética , Glutamina/análogos & derivados , Trombosis/metabolismo , Animales , Arterias/lesiones , Arterias/metabolismo , Arterias/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Plaquetas/metabolismo , Plaquetas/microbiología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/microbiología , Enfermedades Cardiovasculares/patología , Muerte Súbita Cardíaca/patología , Glutamina/sangre , Glutamina/genética , Humanos , Masculino , Metaboloma/genética , Metabolómica/métodos , Ratones , Infarto del Miocardio/sangre , Infarto del Miocardio/microbiología , Activación Plaquetaria/genética , Receptores Adrenérgicos alfa/sangre , Receptores Adrenérgicos alfa/genética , Receptores Adrenérgicos beta/sangre , Receptores Adrenérgicos beta/genética , Factores de Riesgo , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/microbiología , Accidente Cerebrovascular/patología , Trombosis/genética , Trombosis/microbiología , Trombosis/patología
2.
Proc Natl Acad Sci U S A ; 119(48): e2202934119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36417437

RESUMEN

The molecular mechanisms by which dietary fruits and vegetables confer cardiometabolic benefits remain poorly understood. Historically, these beneficial properties have been attributed to the antioxidant activity of flavonoids. Here, we reveal that the host metabolic benefits associated with flavonoid consumption hinge, in part, on gut microbial metabolism. Specifically, we show that a single gut microbial flavonoid catabolite, 4-hydroxyphenylacetic acid (4-HPAA), is sufficient to reduce diet-induced cardiometabolic disease (CMD) burden in mice. The addition of flavonoids to a high fat diet heightened the levels of 4-HPAA within the portal plasma and attenuated obesity, and continuous delivery of 4-HPAA was sufficient to reverse hepatic steatosis. The antisteatotic effect was shown to be associated with the activation of AMP-activated protein kinase α (AMPKα). In a large survey of healthy human gut metagenomes, just over one percent contained homologs of all four characterized bacterial genes required to catabolize flavonols into 4-HPAA. Our results demonstrate the gut microbial contribution to the metabolic benefits associated with flavonoid consumption and underscore the rarity of this process in human gut microbial communities.


Asunto(s)
Hígado Graso , Microbioma Gastrointestinal , Humanos , Ratones , Animales , Polifenoles/farmacología , Microbioma Gastrointestinal/fisiología , Hígado Graso/prevención & control , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Flavonoides/farmacología
3.
Eur Heart J ; 45(27): 2439-2452, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38842092

RESUMEN

BACKGROUND AND AIMS: The pathways and metabolites that contribute to residual cardiovascular disease risks are unclear. Low-calorie sweeteners are widely used sugar substitutes in processed foods with presumed health benefits. Many low-calorie sweeteners are sugar alcohols that also are produced endogenously, albeit at levels over 1000-fold lower than observed following consumption as a sugar substitute. METHODS: Untargeted metabolomics studies were performed on overnight fasting plasma samples in a discovery cohort (n = 1157) of sequential stable subjects undergoing elective diagnostic cardiac evaluations; subsequent stable isotope dilution liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses were performed on an independent, non-overlapping validation cohort (n = 2149). Complementary isolated human platelet, platelet-rich plasma, whole blood, and animal model studies examined the effect of xylitol on platelet responsiveness and thrombus formation in vivo. Finally, an intervention study was performed to assess the effects of xylitol consumption on platelet function in healthy volunteers (n = 10). RESULTS: In initial untargeted metabolomics studies (discovery cohort), circulating levels of a polyol tentatively assigned as xylitol were associated with incident (3-year) major adverse cardiovascular event (MACE) risk. Subsequent stable isotope dilution LC-MS/MS analyses (validation cohort) specific for xylitol (and not its structural isomers) confirmed its association with incident MACE risk [third vs. first tertile adjusted hazard ratio (95% confidence interval), 1.57 (1.12-2.21), P < .01]. Complementary mechanistic studies showed xylitol-enhanced multiple indices of platelet reactivity and in vivo thrombosis formation at levels observed in fasting plasma. In interventional studies, consumption of a xylitol-sweetened drink markedly raised plasma levels and enhanced multiple functional measures of platelet responsiveness in all subjects. CONCLUSIONS: Xylitol is associated with incident MACE risk. Moreover, xylitol both enhanced platelet reactivity and thrombosis potential in vivo. Further studies examining the cardiovascular safety of xylitol are warranted.


Asunto(s)
Enfermedades Cardiovasculares , Xilitol , Humanos , Xilitol/farmacología , Xilitol/efectos adversos , Masculino , Femenino , Persona de Mediana Edad , Enfermedades Cardiovasculares/epidemiología , Trombosis , Edulcorantes/efectos adversos , Edulcorantes/farmacología , Anciano , Animales , Metabolómica , Espectrometría de Masas en Tándem , Adulto , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Factores de Riesgo de Enfermedad Cardiaca
4.
Eur Heart J ; 44(18): 1608-1618, 2023 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-36883587

RESUMEN

AIMS: Little is known about associations of trimethylamine N-oxide (TMAO), a novel gut microbiota-generated metabolite of dietary phosphatidylcholine and carnitine, and its changes over time with all-cause and cause-specific mortality in the general population or in different race/ethnicity groups. The study aimed to investigate associations of serially measured plasma TMAO levels and changes in TMAO over time with all-cause and cause-specific mortality in a multi-ethnic community-based cohort. METHODS AND RESULTS: The study included 6,785 adults from the Multi-Ethnic Study of Atherosclerosis. TMAO was measured at baseline and year 5 using mass spectrometry. Primary outcomes were adjudicated all-cause mortality and cardiovascular disease (CVD) mortality. Secondary outcomes were deaths due to kidney failure, cancer, or dementia obtained from death certificates. Cox proportional hazards models with time-varying TMAO and covariates assessed the associations with adjustment for sociodemographics, lifestyles, diet, metabolic factors, and comorbidities. During a median follow-up of 16.9 years, 1704 participants died and 411 from CVD. Higher TMAO levels associated with higher risk of all-cause mortality [hazard ratio (HR): 1.12, 95% confidence interval (CI): 1.08-1.17], CVD mortality (HR: 1.09, 95% CI: 1.00-1.09), and death due to kidney failure (HR: 1.44, 95% CI: 1.25-1.66) per inter-quintile range, but not deaths due to cancer or dementia. Annualized changes in TMAO levels associated with higher risk of all-cause mortality (HR: 1.10, 95% CI: 1.05-1.14) and death due to kidney failure (HR: 1.54, 95% CI: 1.26-1.89) but not other deaths. CONCLUSION: Plasma TMAO levels were positively associated with mortality, especially deaths due to cardiovascular and renal disease, in a multi-ethnic US cohort.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Demencia , Neoplasias , Insuficiencia Renal , Adulto , Humanos , Factores de Riesgo , Biomarcadores , Metilaminas/metabolismo , Insuficiencia Renal/etiología , Aterosclerosis/complicaciones , Neoplasias/complicaciones
5.
Eur Heart J ; 44(32): 3085-3096, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37342006

RESUMEN

AIMS: Precision microbiome modulation as a novel treatment strategy is a rapidly evolving and sought goal. The aim of this study is to determine relationships among systemic gut microbial metabolite levels and incident cardiovascular disease risks to identify gut microbial pathways as possible targets for personalized therapeutic interventions. METHODS AND RESULTS: Stable isotope dilution mass spectrometry methods to quantitatively measure aromatic amino acids and their metabolites were used to examine sequential subjects undergoing elective diagnostic cardiac evaluation in two independent cohorts with longitudinal outcome data [US (n = 4000) and EU (n = 833) cohorts]. It was also used in plasma from humans and mice before vs. after a cocktail of poorly absorbed antibiotics to suppress gut microbiota. Multiple aromatic amino acid-derived metabolites that originate, at least in part, from gut bacteria are associated with incident (3-year) major adverse cardiovascular event (MACE) risks (myocardial infarction, stroke, or death) and all-cause mortality independent of traditional risk factors. Key gut microbiota-derived metabolites associated with incident MACE and poorer survival risks include: (i) phenylacetyl glutamine and phenylacetyl glycine (from phenylalanine); (ii) p-cresol (from tyrosine) yielding p-cresol sulfate and p-cresol glucuronide; (iii) 4-OH-phenyllactic acid (from tyrosine) yielding 4-OH-benzoic acid and 4-OH-hippuric acid; (iv) indole (from tryptophan) yielding indole glucuronide and indoxyl sulfate; (v) indole-3-pyruvic acid (from tryptophan) yielding indole-3-lactic acid and indole-3-acetyl-glutamine, and (vi) 5-OH-indole-3-acetic acid (from tryptophan). CONCLUSION: Key gut microbiota-generated metabolites derived from aromatic amino acids independently associated with incident adverse cardiovascular outcomes are identified, and thus will help focus future studies on gut-microbial metabolic outputs relevant to host cardiovascular health.


Asunto(s)
Microbioma Gastrointestinal , Infarto del Miocardio , Humanos , Ratones , Animales , Aminoácidos Aromáticos/metabolismo , Triptófano , Glutamina , Glucurónidos , Indoles/metabolismo , Progresión de la Enfermedad , Tirosina
6.
Eur Heart J ; 43(6): 518-533, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34597388

RESUMEN

AIMS: Atherosclerotic cardiovascular disease (ACVD) is a major cause of mortality and morbidity worldwide, and increased low-density lipoproteins (LDLs) play a critical role in development and progression of atherosclerosis. Here, we examined for the first time gut immunomodulatory effects of the microbiota-derived metabolite propionic acid (PA) on intestinal cholesterol metabolism. METHODS AND RESULTS: Using both human and animal model studies, we demonstrate that treatment with PA reduces blood total and LDL cholesterol levels. In apolipoprotein E-/- (Apoe-/-) mice fed a high-fat diet (HFD), PA reduced intestinal cholesterol absorption and aortic atherosclerotic lesion area. Further, PA increased regulatory T-cell numbers and interleukin (IL)-10 levels in the intestinal microenvironment, which in turn suppressed the expression of Niemann-Pick C1-like 1 (Npc1l1), a major intestinal cholesterol transporter. Blockade of IL-10 receptor signalling attenuated the PA-related reduction in total and LDL cholesterol and augmented atherosclerotic lesion severity in the HFD-fed Apoe-/- mice. To translate these preclinical findings to humans, we conducted a randomized, double-blinded, placebo-controlled human study (clinical trial no. NCT03590496). Oral supplementation with 500 mg of PA twice daily over the course of 8 weeks significantly reduced LDL [-15.9 mg/dL (-8.1%) vs. -1.6 mg/dL (-0.5%), P = 0.016], total [-19.6 mg/dL (-7.3%) vs. -5.3 mg/dL (-1.7%), P = 0.014] and non-high-density lipoprotein cholesterol levels [PA vs. placebo: -18.9 mg/dL (-9.1%) vs. -0.6 mg/dL (-0.5%), P = 0.002] in subjects with elevated baseline LDL cholesterol levels. CONCLUSION: Our findings reveal a novel immune-mediated pathway linking the gut microbiota-derived metabolite PA with intestinal Npc1l1 expression and cholesterol homeostasis. The results highlight the gut immune system as a potential therapeutic target to control dyslipidaemia that may introduce a new avenue for prevention of ACVDs.


Asunto(s)
Aterosclerosis , Propionatos , Animales , Apolipoproteínas E/metabolismo , Aterosclerosis/etiología , Colesterol/metabolismo , LDL-Colesterol/metabolismo , Humanos , Absorción Intestinal , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Propionatos/farmacología , Propionatos/uso terapéutico
7.
Am Heart J ; 245: 78-80, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34929195

RESUMEN

We prospectively performed serial differential sugar absorption test in 29 consecutively consented patients with advanced decompensated heart failure admitted to the heart failure intensive care unit for hemodynamically-guided therapy. We observed that intestinal barrier function was significantly impaired in our study cohort, and increased intestinal permeability was associated with elevated right atrial pressure and poorer prognosis yet without any association with systemic levels of the gut microbial metabolite, trimethylamine N-oxide (TMAO) or intestinal fatty acid binding protein that were thought to be indicative of intestinal abnormalities.


Asunto(s)
Presión Atrial , Insuficiencia Cardíaca , Estudios de Cohortes , Hospitalización , Humanos , Factores de Riesgo
8.
J Lipid Res ; 61(2): 159-177, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31818878

RESUMEN

Bile acids (BAs) serve multiple biological functions, ranging from the absorption of lipids and fat-soluble vitamins to serving as signaling molecules through the direct activation of dedicated cellular receptors. Synthesized by both host and microbial pathways, BAs are increasingly understood as participating in the regulation of numerous pathways relevant to metabolic diseases, including lipid and glucose metabolism, energy expenditure, and inflammation. Quantitative analyses of BAs in biological matrices can be problematic due to their unusual and diverse physicochemical properties, making optimization of a method that shows good accuracy, precision, efficiency of extraction, and minimized matrix effects across structurally distinct human and murine BAs challenging. Herein we develop and clinically validate a stable-isotope-dilution LC/MS/MS method for the quantitative analysis of numerous primary and secondary BAs in both human and mouse biological matrices. We also utilize this tool to investigate gut microbiota participation in the generation of structurally specific BAs in both humans and mice. We examine circulating levels of specific BAs and in a clinical case-control study of age- and gender-matched type 2 diabetes mellitus (T2DM) versus nondiabetics. BAs whose circulating levels are associated with T2DM include numerous 12α-hydroxyl BAs (taurocholic acid, taurodeoxycholic acid, glycodeoxycholic acid, deoxycholic acid, and 3-ketodeoxycholic acid), while taurohyodeoxycholic acid was negatively associated with diabetes. The LC/MS/MS-based platform described should serve as a robust, high-throughput investigative tool for studying the potential involvement of structurally specific BAs and the gut microbiome on both physiological and disease processes.


Asunto(s)
Ácidos y Sales Biliares/análisis , Diabetes Mellitus Tipo 2/metabolismo , Microbioma Gastrointestinal , Animales , Ácidos y Sales Biliares/química , Estudios de Casos y Controles , Cromatografía Liquida , Diabetes Mellitus Tipo 2/microbiología , Femenino , Voluntarios Sanos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Control de Calidad , Espectrometría de Masas en Tándem
9.
Am J Physiol Heart Circ Physiol ; 318(6): H1474-H1486, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32330092

RESUMEN

The gut microbe-derived metabolite trimethylamine-N-oxide (TMAO) has recently been linked to cardiovascular disease (CVD) pathogenesis, prompting the development of therapeutic strategies to reduce TMAO. Previous work has shown that experimental alteration of circulating TMAO levels via dietary alterations or inhibition of the host TMAO producing enzyme flavin containing monooxygenase 3 (FMO3) is associated with reorganization of host cholesterol and bile acid metabolism in mice. In this work, we set out to understand whether recently developed nonlethal gut microbe-targeting small molecule choline trimethylamine (TMA) lyase inhibitors also alter host cholesterol and bile acid metabolism. Treatment of mice with the mechanism-based choline TMA lyase inhibitor, iodomethylcholine (IMC), increased fecal neutral sterol loss in the form of coprostanol, a bacteria metabolite of cholesterol. In parallel, IMC treatment resulted in marked reductions in the intestinal sterol transporter Niemann-pick C1-like 1 (NPC1L1) and reorganization of the gut microbial community, primarily reversing choline supplemented diet-induced changes. IMC also prevented diet-driven hepatic cholesterol accumulation, causing both upregulation of the host hepatic bile acid synthetic enzyme CYP7A1 and altering the expression of hepatic genes critical for bile acid feedback regulation. These studies suggest that the gut microbiota-driven TMAO pathway is closely linked to both microbe and host sterol and bile acid metabolism. Collectively, as gut microbe-targeting choline TMA lyase inhibitors move through the drug discovery pipeline from preclinical models to human studies, it will be important to understand how these drugs impact both microbe and host cholesterol and bile acid metabolism.NEW & NOTEWORTHY The gut microbe-dependent metabolite trimethylamine-N-oxide (TMAO) has been strongly associated with cardiovascular mortality, prompting drug discovery efforts to identify points of therapeutic intervention within the microbe host TMAO pathway. Recently, mechanism-based small molecule inhibitors of the major bacterial trimethylamine (TMA) lyase enzymes have been developed, and these drugs show efficacy as anti-atherothrombotic agents. The novel findings of this study are that small molecule TMA lyase inhibition results in beneficial reorganization of host cholesterol and bile acid metabolism. This study confirms previous observations that the gut microbial TMAO pathway is intimately linked to host cholesterol and bile acid metabolism and provides further rationale for the development of small molecule choline TMA lyase inhibitors for the treatment of cardiometabolic disorders.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Colesterol/metabolismo , Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/metabolismo , Animales , Colina/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Ratones
11.
Nat Chem Biol ; 12(6): 444-51, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27110679

RESUMEN

Usher syndrome type III (USH3), characterized by progressive deafness, variable balance disorder and blindness, is caused by destabilizing mutations in the gene encoding the clarin-1 (CLRN1) protein. Here we report a new strategy to mitigate hearing loss associated with a common USH3 mutation CLRN1(N48K) that involves cell-based high-throughput screening of small molecules capable of stabilizing CLRN1(N48K), followed by a secondary screening to eliminate general proteasome inhibitors, and finally an iterative process to optimize structure-activity relationships. This resulted in the identification of BioFocus 844 (BF844). To test the efficacy of BF844, we developed a mouse model that mimicked the progressive hearing loss associated with USH3. BF844 effectively attenuated progressive hearing loss and prevented deafness in this model. Because the CLRN1(N48K) mutation causes both hearing and vision loss, BF844 could in principle prevent both sensory deficiencies in patients with USH3. Moreover, the strategy described here could help identify drugs for other protein-destabilizing monogenic disorders.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de la Membrana/antagonistas & inhibidores , Pirazoles/farmacología , Piridazinas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Síndromes de Usher/tratamiento farmacológico , Animales , Ensayos Analíticos de Alto Rendimiento , Humanos , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Estructura Molecular , Pirazoles/síntesis química , Pirazoles/química , Pirazoles/uso terapéutico , Piridazinas/síntesis química , Piridazinas/química , Piridazinas/uso terapéutico , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Síndromes de Usher/genética
12.
Glycoconj J ; 35(2): 177-190, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29305779

RESUMEN

LW-1 is a collagen-linked blue fluorophore whose skin levels increase with age, diabetes and end-stage renal disease (ESRD), and correlate with the long-term progression of microvascular disease and indices of subclinical cardiovascular disease in type 1 diabetes. The chemical structure of LW-1 is still elusive, but earlier NMR analyses showed it has a lysine residue in an aromatic ring coupled to a sugar molecule reminiscent of advanced glycation end-products (AGEs). We hypothesized and demonstrate here that the unknown sugar is a N-linked glucuronic acid. LW-1 was extracted and highly purified from ~99 g insoluble skin collagen obtained at autopsy from patients with diabetes/ESRD using multiple rounds of proteolytic digestion and purification by liquid chromatography (LC). Advanced NMR techniques (1H-NMR, 13C-NMR, 1H-13C HSQC, 1H-1H TOCSY, 1H-13C HMBC) together with LC-mass spectrometry (MS) revealed a loss of 176 amu (atomic mass unit) unequivocally point to the presence of a glucuronic acid moiety in LW-1. To confirm this data, LW-1 was incubated with ß-glycosidases (glucosidase, galactosidase, glucuronidase) and products were analyzed by LC-MS. Only glucuronidase could cleave the sugar from the parent molecule. These results establish LW-1 as a glucuronide, now named glucuronidine, and for the first time raise the possible existence of a "glucuronidation pathway of diabetic complications". Future research is needed to rigorously probe this concept and elucidate the molecular origin and biological source of a circulating glucuronidine aglycone.


Asunto(s)
Colágeno/metabolismo , Complicaciones de la Diabetes/metabolismo , Ácido Glucurónico/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Colágeno/química , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Persona de Mediana Edad , Piel/metabolismo
13.
J Neurosci ; 34(24): 8164-74, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24920621

RESUMEN

The photoreceptor outer segment (OS) is comprised of two compartments: plasma membrane (PM) and disk membranes. It is unknown how the PM renewal is coordinated with that of the disk membranes. Here we visualized the localization and trafficking process of rod cyclic nucleotide-gated channel α-subunit (CNGA1), a PM component essential for phototransduction. The localization was visualized by fusing CNGA1 to a fluorescent protein Dendra2 and expressing in Xenopus laevis rod photoreceptors. Dendra2 allowed us to label CNGA1 in a spatiotemporal manner and therefore discriminate between old and newly trafficked CNGA1-Dendra2 in the OS PM. Newly synthesized CNGA1 was preferentially trafficked to the basal region of the lateral OS PM where newly formed and matured disks are also added. Unique trafficking pattern and diffusion barrier excluded CNGA1 from the PM domains, which are the proposed site of disk membrane maturation. Such distinct compartmentalization allows the confinement of cyclic nucleotide-gated channel in the PM, while preventing the disk membrane incorporation. Cytochalasin D and latrunculin A treatments, which are known to disrupt F-actin-dependent disk membrane morphogenesis, prevented the entrance of newly synthesized CNGA1 to the OS PM, but did not prevent the entrance of rhodopsin and peripherin/rds to the membrane evaginations believed to be disk membrane precursors. Uptake of rhodopsin and peripherin/rds coincided with the overgrowth of the evaginations at the base of the OS. Thus F-actin is essential for the trafficking of CNGA1 to the ciliary PM, and coordinates the formations of disk membrane rim region and OS PM.


Asunto(s)
Actinas/metabolismo , Membrana Celular/metabolismo , Morfogénesis/fisiología , Retina/citología , Células Fotorreceptoras Retinianas Bastones/citología , Animales , Animales Modificados Genéticamente , Membrana Celular/ultraestructura , Quelantes/farmacología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Endopeptidasas/farmacología , Técnicas In Vitro , Larva , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Modelos Biológicos , Morfogénesis/genética , Fotoblanqueo , Transporte de Proteínas/fisiología , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Rodopsina/genética , Rodopsina/metabolismo , Xenopus
14.
J Neurosci ; 34(3): 992-1006, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24431457

RESUMEN

It is unclear how unconventional secretion interplays with conventional secretion for the normal maintenance and renewal of membrane structures. The photoreceptor sensory cilium is recognized for fast membrane renewal, for which rhodopsin and peripherin/rds (P/rds) play critical roles. Here, we provide evidence that P/rds is targeted to the cilia by an unconventional secretion pathway. When expressed in ciliated hTERT-RPE1 human cell line, P/rd is localized to cilia. Cilium trafficking of P/rds was sustained even when the Golgi functions, including trans-Golgi-mediated conventional secretion, were inhibited by the small molecules brefeldin A, 30N12, and monensin. The unconventional cilia targeting of P/rds is dependent on COPII-mediated exit from the ER, but appears to be independent of GRASP55-mediated secretion. The regions in the C-terminal tail of P/rds are essential for this unconventional trafficking. In the absence of the region required for cilia targeting, P/rds was prohibited from entering the secretory pathways and was retained in the Golgi apparatus. A region essential for this Golgi retention was also found in the C-terminal tail of P/rds and supported the cilia targeting of P/rds mediated by unconventional secretion. In ciliated cells, including bovine and Xenopus laevis rod photoreceptors, P/rds was robustly sensitive to endoglycosidase H, which is consistent with its bypassing the medial Golgi and traversing the unconventional secretory pathway. Because rhodopsin is known to traffic through conventional secretion, this study of P/rds suggests that both conventional secretion and unconventional secretion need to cooperate for the renewal of the photoreceptor sensory cilium.


Asunto(s)
Cilios/metabolismo , Periferinas/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Vías Secretoras/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Bovinos , Línea Celular , Cilios/genética , Humanos , Periferinas/genética , Transporte de Proteínas/fisiología , Xenopus laevis
15.
Photochem Photobiol Sci ; 14(10): 1787-806, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26345171

RESUMEN

In the past few decades, fluorescent proteins have revolutionized the field of cell biology. Phototransformable fluorescent proteins are capable of changing their excitation and emission spectra after being exposed to specific wavelength(s) of light. The majority of phototransformable fluorescent proteins have originated from marine organisms. Genetic engineering of these proteins has made available many choices for different colors, modes of conversion, and other biophysical properties. Their phototransformative property has allowed the highlighting and tracking of subpopulations of cells, organelles, and proteins in living systems. Furthermore, phototransformable fluorescent proteins have offered new methods for superresolution fluorescence microscopy and optogenetics manipulation of proteins. One of the major advantages of phototransformable fluorescent proteins is their applicability for visualizing newly synthesized proteins that are en route to their final destinations. In this paper, we will discuss the biological applications of phototransformable fluorescent proteins with special emphasis on the application of tracking membrane proteins in vertebrate photoreceptor cells.


Asunto(s)
Células/citología , Luz , Proteínas Luminiscentes/metabolismo , Animales , Técnicas Biosensibles , Células/metabolismo , Células/efectos de la radiación , Humanos , Células Fotorreceptoras/citología , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/efectos de la radiación
16.
J Neurosci ; 33(34): 13621-38, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23966685

RESUMEN

Rhodopsin is a cilia-specific GPCR essential for vision. Rhodopsin mislocalization is associated with blinding diseases called retinal ciliopathies. The mechanism by which rhodopsin mislocalizes in rod photoreceptor neurons is not well understood. Therefore, we investigated the roles of trafficking signals in rhodopsin mislocalization. Rhodopsin and its truncation mutants were fused to a photoconvertible fluorescent protein, Dendra2, and expressed in Xenopus laevis rod photoreceptors. Photoconversion of Dendra2 causes a color change from green to red, enabling visualization of the dynamic events associated with rhodopsin trafficking and renewal. We found that rhodopsin mislocalization is a facilitated process for which a signal located within 322-326 aa (CCGKN) is essential. An additional signal within 327-336 aa further facilitated the mislocalization. This collective mistrafficking signal confers toxicity to rhodopsin and causes mislocalization when the VXPX cilia-targeting motif is absent. We also determined that the VXPX motif neutralizes this mistrafficking signal, enhances ciliary targeting at least 10-fold, and accelerates trafficking of post-Golgi vesicular structures. In the absence of the VXPX motif, mislocalized rhodopsin is actively cleared through secretion of vesicles into the extracellular milieu. Therefore, this study unveiled the multiple roles of trafficking signals in rhodopsin localization and renewal.


Asunto(s)
Transporte de Proteínas/genética , Receptores Acoplados a Proteínas G/metabolismo , Rodopsina/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Anuros , Ojo/anatomía & histología , Femenino , Regulación de la Expresión Génica/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Modelos Moleculares , Mutación/genética , Técnicas de Cultivo de Órganos , Estimulación Luminosa , Unión Proteica , Estructura Terciaria de Proteína , Receptores Acoplados a Proteínas G/genética , Retina/citología , Retina/metabolismo , Retina/ultraestructura , Rodopsina/genética , Transducción de Señal/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Xenopus laevis
17.
Clin Chem Lab Med ; 52(1): 21-32, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23787467

RESUMEN

Advanced glycation end products (AGEs) represent a family of protein, peptide, amino acid, nucleic acid and lipid adducts formed by the reaction of carbonyl compounds derived directly or indirectly from glucose, ascorbic acid and other metabolites such as methylglyoxal. AGE formation in diabetes is of growing importance for their role as markers and potential culprits of diabetic complications, in particular retinopathy, nephropathy and neuropathy. Development of sensitive and specific assays utilizing liquid chromatography mass spectrometry with isotope dilution method has made it possible to detect and quantitate non-UV active AGEs such as carboxymethyl-lysine and glucosepane, the most prevalent AGE and protein crosslink of the extracellular matrix. Below we review studies on AGE formation in two skin biopsies obtained near the closeout of the Diabetes Control and Complications Trial (DCCT), one of which was processed in 2011 for assay of novel AGEs. The results of these analyses show that while several AGEs are associated and predict complication progression, the glucose/fructose-lysine/glucosepane AGE axis is one of the most robust markers for microvascular disease, especially retinopathy, in spite of adjustment for past or future average glycemia. Yet overall little biological and clinical information is available on glucosepane, making this review a call for data in a field of growing importance for diabetes and chronic metabolic diseases of aging.


Asunto(s)
Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Animales , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Complicaciones de la Diabetes/etiología , Complicaciones de la Diabetes/patología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Productos Finales de Glicación Avanzada/química , Humanos , Factores de Riesgo , Piel/metabolismo , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/patología
18.
Diabetes ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701355

RESUMEN

Bile acids (BAs) are cholesterol-derived compounds that regulate glucose, lipid, and energy metabolism. Despite their significance in glucose homeostasis, the association between specific BA molecular species and their synthetic pathways with diabetes mellitus (DM) is unclear. Here, we used a recently validated stable-isotope dilution highperformance liquid chromatography with tandem mass spectrometry (LC-MS/MS) method to quantify a panel of BAs in fasting plasma from subjects (n=2,145) and explored structural and genetic determinants of BAs linked to DM, insulin resistance and obesity. Multiple 12α-hydroxylated BAs were associated with DM [adjusted odds ratios (aORs):1.3-1.9 (all P<0.05)] and insulin resistance [aORs:1.3-2.2 (all P<0.05)]. Conversely, multiple 6a-hydroxylated BAs and isolithocholic acid (Iso-LCA) were inversely associated with DM and obesity [aORs:0.3-0.9 (all P<0.05)]. Genome-wide association studies (GWAS) revealed multiple genome-wide significant loci linked with nine of the 14 DM-associated BAs, including a locus for Iso-LCA (rs11866815). Mendelian randomization analyses showed genetically elevated DCA levels were causally associated with higher BMI, and Iso-LCA levels were causally associated with reduced BMI and DM risk. In conclusion, comprehensive large-scale quantitative mass spectrometry and genetics analyses show circulating levels of multiple structurally specific BAs, especially DCA and Iso-LCA, are clinically associated with and genetically linked to obesity and DM.

19.
Eur J Heart Fail ; 26(2): 233-241, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38124458

RESUMEN

AIM: Phenylacetylglutamine (PAGln) is a phenylalanine-derived metabolite produced by gut microbiota with mechanistic links to heart failure (HF)-relevant phenotypes. We sought to investigate the prognostic value of PAGln in patients with stable HF. METHODS AND RESULTS: Fasting plasma PAGln levels were measured by stable-isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) in patients with stable HF from two large cohorts. All-cause mortality was assessed at 5-year follow-up in the Cleveland cohort, and HF, hospitalization, or mortality were assessed at 3-year follow-up in the Berlin cohort. Within the Cleveland cohort, median PAGln levels were 4.2 (interquartile range [IQR] 2.4-6.9) µM. Highest quartile of PAGln was associated with 3.09-fold increased mortality risk compared to lowest quartile. Following adjustments for traditional risk factors, as well as race, estimated glomerular filtration rate, amino-terminal pro-B-type natriuretic peptide, high-sensitivity C-reactive protein, left ventricular ejection fraction, ischaemic aetiology, and HF drug treatment, elevated PAGln levels remained predictive of 5-year mortality in quartile comparisons (adjusted hazard ratio [HR] [95% confidence interval, CI] for Q4 vs Q1: 1.64 [1.07-2.53]). In the Berlin cohort, a similar distribution of PAGln levels was observed (median 3.2 [IQR 2.0-4.8] µM), and PAGln levels were associated with a 1.92-fold increase in 3-year HF hospitalization or all-cause mortality risk (adjusted HR [95% CI] for Q4 vs Q1: 1.92 [1.02-3.61]). Prognostic value of PAGln appears to be independent of trimethylamine N-oxide levels. CONCLUSION: High levels of PAGln are associated with adverse outcomes independent of traditional cardiac risk factors and cardio-renal risk markers.


Asunto(s)
Microbioma Gastrointestinal , Glutamina/análogos & derivados , Insuficiencia Cardíaca , Humanos , Pronóstico , Biomarcadores , Volumen Sistólico , Cromatografía Liquida , Función Ventricular Izquierda , Espectrometría de Masas en Tándem
20.
Nat Med ; 29(3): 710-718, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36849732

RESUMEN

Artificial sweeteners are widely used sugar substitutes, but little is known about their long-term effects on cardiometabolic disease risks. Here we examined the commonly used sugar substitute erythritol and atherothrombotic disease risk. In initial untargeted metabolomics studies in patients undergoing cardiac risk assessment (n = 1,157; discovery cohort, NCT00590200 ), circulating levels of multiple polyol sweeteners, especially erythritol, were associated with incident (3 year) risk for major adverse cardiovascular events (MACE; includes death or nonfatal myocardial infarction or stroke). Subsequent targeted metabolomics analyses in independent US (n = 2,149, NCT00590200 ) and European (n = 833, DRKS00020915 ) validation cohorts of stable patients undergoing elective cardiac evaluation confirmed this association (fourth versus first quartile adjusted hazard ratio (95% confidence interval), 1.80 (1.18-2.77) and 2.21 (1.20-4.07), respectively). At physiological levels, erythritol enhanced platelet reactivity in vitro and thrombosis formation in vivo. Finally, in a prospective pilot intervention study ( NCT04731363 ), erythritol ingestion in healthy volunteers (n = 8) induced marked and sustained (>2 d) increases in plasma erythritol levels well above thresholds associated with heightened platelet reactivity and thrombosis potential in in vitro and in vivo studies. Our findings reveal that erythritol is both associated with incident MACE risk and fosters enhanced thrombosis. Studies assessing the long-term safety of erythritol are warranted.


Asunto(s)
Infarto del Miocardio , Edulcorantes , Humanos , Edulcorantes/efectos adversos , Estudios Prospectivos , Eritritol/farmacología , Corazón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA