Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Physiol Biochem ; 58(3): 273-287, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38881348

RESUMEN

BACKGROUND/AIMS: Inhaled particulate air pollution is associated with cardiotoxicity with underlying mechanisms including oxidative stress and inflammation. Carnosol, commonly found in rosemary and sage, is known to possess a broad range of therapeutic properties such as antioxidant, anti-inflammatory and antiapoptotic. However, its cardioprotective effects on diesel exhaust particles (DEPs)-induced toxicity have not been studied yet. Hence, we evaluated the potential ameliorative effects of carnosol on DEPs-induced heart toxicity in mice, and the underlying mechanisms involved. METHODS: Mice were intratracheally instilled with DEPs (1 mg/kg) or saline, and 1 hour prior to instillation they were given intraperitoneally either carnosol (20 mg/kg) or saline. Twenty-four hours after the DEPs instillation, multiple parameters were evaluated in the heart by enzyme-linked immunosorbent assay, colorimetric assay, Comet assay and Western blot technique. RESULTS: Carnosol has significantly reduced the elevation in the plasma levels of lactate hydrogenase and brain natriuretic peptide induced by DEPs. Likewise, the augmented cardiac levels of proinflammatory cytokines, lipid peroxidation, and total nitric oxide in DEPs-treated groups were significantly normalized with the treatment of carnosol. Moreover, carnosol has markedly reduced the heart mitochondrial dysfunction, as well as DNA damage and apoptosis of mice treated with DEPs. Similarly, carnosol significantly reduced the elevated expressions of phosphorylated nuclear factor-кB (NF-кB) and mitogen-activated protein kinases (MAPKs) in the hearts. Furthermore, the treatment with carnosol has restored the decrease in the expression of sirtuin-1 in the hearts of mice exposed to DEPs. CONCLUSION: Carnosol significantly attenuated DEP-induced cardiotoxicity in mice by suppressing inflammation, oxidative stress, DNA damage, and apoptosis, at least partly via mechanisms involving sirtuin-1 activation and the inhibition of NF-кB and MAPKs activation.


Asunto(s)
Abietanos , Cardiotoxicidad , FN-kappa B , Estrés Oxidativo , Emisiones de Vehículos , Animales , Ratones , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Emisiones de Vehículos/toxicidad , Abietanos/farmacología , Abietanos/uso terapéutico , Masculino , Cardiotoxicidad/etiología , Cardiotoxicidad/metabolismo , Cardiotoxicidad/prevención & control , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/patología , Estrés Nitrosativo/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Inflamación/inducido químicamente , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Sirtuina 1/metabolismo , Sirtuina 1/genética , Daño del ADN/efectos de los fármacos
2.
Int J Mol Sci ; 25(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38203756

RESUMEN

Tobacco smoking is an independent risk factor in the onset of kidney disease. To date, there have been no reports on the influence of waterpipe smoke (WPS) in experimentally induced chronic kidney disease (CKD) models. We studied the effects and mechanisms of actions of WPS on a mouse model of adenine-induced CKD. Mice fed either a normal diet, or an adenine-added diet and were exposed to either air or WPS (30 min/day and 5 days/week) for four consecutive weeks. Plasma creatinine, urea and indoxyl sulfate increased and creatinine clearance decreased in adenine + WPS versus either WPS or adenine + saline groups. The urinary concentrations of kidney injury molecule-1 and adiponectin and the activities of neutrophil gelatinase-associated lipocalin and N-acetyl-ß-D-glucosaminidase were augmented in adenine + WPS compared with either adenine + air or WPS groups. In the kidney tissue, several markers of oxidative stress and inflammation were higher in adenine + WPS than in either adenine + air or WPS groups. Compared with the controls, WPS inhalation in mice with CKD increased DNA damage, and urinary concentration of 8-hydroxy-2-deoxyguanosine. Furthermore, the expressions of nuclear factor κB (NF-κB) and mitogen-activated protein kinases (MAPKs) (ERK and p38) were elevated in the kidneys of adenine + WPS group, compared with the controls. Likewise, the kidneys of adenine + WPS group revealed more marked histological tubular injury, chronic inflammation and interstitial fibrosis. In conclusion, WPS inhalation aggravates kidney injury, oxidative stress, inflammation, DNA damage and fibrosis in mice with adenine-induced CKD, indicating that WPS exposure intensifies CKD. These effects were associated with a mechanism involving NF-κB, ERK and p38 activations.


Asunto(s)
Insuficiencia Renal Crónica , Fumar en Pipa de Agua , Animales , Ratones , Creatinina , FN-kappa B , Insuficiencia Renal Crónica/inducido químicamente , Adenina , Inflamación , Fibrosis
3.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835195

RESUMEN

Silica nanoparticles (SiNPs) are one of the most widely used nanomaterials. SiNPs can encounter erythrocytes and hypertension is strongly linked to abnormalities in the functional and structural characteristics of erythrocytes. As little is known about the combinatorial effect of SiNP-hypertension interactions on erythrocytes, the aim of this work was to study the effects triggered by hypertension on SiNPs induced hemolysis and the pathophysiological mechanism underlying it. We compared the interaction of amorphous 50 nm SiNPs at various concentrations (0.2, 1, 5 and 25 µg/mL) with erythrocytes of normotensive (NT) and hypertensive (HT) rats in vitro. Following incubation of the erythrocytes, SiNPs induced significant and dose-dependent increase in hemolysis. Transmission electron microscopy revealed erythrocyte deformity in addition to SiNPs taken up by erythrocytes. The erythrocyte susceptibility to lipid peroxidation was significantly increased. The concentration of reduced glutathione, and activities of superoxide dismutase, and catalase were significantly increased. SiNPs significantly increased intracellular Ca2+. Likewise, the concentration of the cellular protein annexin V and calpain activity was enhanced by SiNPs. Concerningly, all the tested parameters were significantly enhanced in erythrocytes from HT rats compared to NT rats. Our results collectively demonstrate that hypertension can potentially exacerbate the in vitro effect induced by SiNPs.


Asunto(s)
Hipertensión , Nanopartículas , Dióxido de Silicio , Animales , Ratas , Eritrocitos/metabolismo , Hemólisis , Hipertensión/etiología , Hipertensión/metabolismo , Nanopartículas/efectos adversos , Nanopartículas/química , Ratas Endogámicas SHR , Ratas Wistar , Dióxido de Silicio/efectos adversos , Dióxido de Silicio/química
4.
Int J Mol Sci ; 24(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37240239

RESUMEN

Silver nanoparticles are widely used in various industrial and biomedical applications; however, little is known about their potential cardiotoxicity after pulmonary exposure, particularly in hypertensive subjects. We assessed the cardiotoxicity of polyethylene glycol (PEG)-coated AgNPs in hypertensive (HT) mice. Saline (control) or PEG-AgNPs (0.5 mg/kg) were intratracheally (i.t.) instilled four times (on days 7, 14, 21, and 28 post-angiotensin II or vehicle [saline] infusion). On day 29, various cardiovascular parameters were evaluated. Systolic blood pressure and heart rate were higher in PEG-AgNPs-treated HT mice than in saline-treated HT or PEG-AgNPs-treated normotensive mice. The heart histology of PEG-AgNPs-treated HT mice had comparatively larger cardiomyocyte damage with fibrosis and inflammatory cells when compared with saline-treated HT mice. Similarly, the relative heart weight and the activities of lactate dehydrogenase and creatine kinase-MB and the concentration of brain natriuretic peptide concentration were significantly augmented in heart homogenates of HT mice treated with PEG-AgNPs compared with HT mice treated with saline or normotensive animals exposed to PEG-AgNPs. Similarly, the concentrations of endothelin-1, P-selectin, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 in heart homogenates were significantly higher than in the other two groups when HT mice were exposed to PEG-AgNPs. Markers of inflammation and oxidative and nitrosative stress were significantly elevated in heart homogenates of HT mice given PEG-AgNPs compared with HT mice treated with saline or normotensive animals exposed to PEG-AgNPs. The hearts of HT mice exposed to PEG-AgNPs had significantly increased DNA damage than those of HT mice treated with saline or normotensive mice treated with AgNPs. In conclusion, the cardiac injury caused by PEG-AgNPs was aggravated in hypertensive mice. The cardiotoxicity of PEG-AgNPs in HT mice highlights the importance of an in-depth assessment of their toxicity before using them in clinical settings, particularly in patients with pre-existing cardiovascular diseases.


Asunto(s)
Hipertensión , Nanopartículas del Metal , Animales , Ratones , Presión Sanguínea , Plata/farmacología , Nanopartículas del Metal/toxicidad , Cardiotoxicidad , Polietilenglicoles , Hipertensión/inducido químicamente
5.
Cell Physiol Biochem ; 56(1): 13-27, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35041781

RESUMEN

BACKGROUND/AIMS: Waterpipe smoke (WPS) is the second most prevalent form of smoking in the world. There are ample evidences about the vascular alterations caused by regular WPS (Reg-WPS). Nonetheless, comparison of the chronic vascular response induced by regular versus occasional WPS (Occ-WPS) exposure is very scarce. METHODS: We investigated, in BALB/c mice, the effects of Occ-WPS (30 minutes/day, 1 day/week) versus Reg-WPS (30 minutes/day, 5 days/week) for 6 months on thrombogenicity and platelet aggregation in vivo and in vitro. Moreover, various markers of endothelial integrity, inflammation and oxidative stress were assessed by enzyme-linked immunosorbent assay and colorimetric assay. Control mice were exposed to air. RESULTS: Our results showed that either Occ-WPS or Reg-WPS exposure shortened the thrombotic time in pial microvessels in vivo. Moreover, in pial venules, this effect was more marked in Reg-WPS group (-47%) compared with Occ-WPS (-34%). Similarly, exposure to either Occ-WPS or Reg-WPS reduced the prothrombin time and activated partial thromboplastin time. Platelet count was increased only in Reg-WPS exposure. Exposure to either Occ-WPS or Reg-WPS induced platelet aggregation in vitro. In addition, there was a statistically significant difference between Occ-WPS and Reg-WPS groups in platelet count and aggregation. Plasma concentration of tissue factor (+98%), P-selectin (+14%) and E-selectin (+16%) were significantly increased in Occ-WPS group compared with air exposed group. Likewise, compared with air group Reg-WPS caused an increase in concentration of tissue factor (+193%), P-selectin (+21%) and E-selectin (+42%). Nevertheless, only Reg-WPS induced a decrease (-38%) in the plasma concentration of tissue plasminogen activator. Notably, our results showed a statistically significant difference between Occ-WPS and Reg-WPS groups in the concentration of tissue factor. Erythrocyte numbers, hemoglobin concentration, hematocrit and lactate dehydrogenase activity were augmented only in Reg-WPS group compared with either control or Occ-WPS groups. Likewise, only Reg-WPS induced an increase in proinflammatory cytokines, tumor necrosis factor-α and interleukin-1ß compared with either control or Occ-WPS groups. However, markers of oxidative stress including 8-isoprostane and total antioxidants were enhanced in both Occ-WPS and Reg-WPS compared with control group. CONCLUSION: Our data confirm the vascular toxicity of the chronic Reg-WPS exposure and shows that even occasional chronic exposure to WPS caused thrombosis, platelet aggregation, endothelial alterations and oxidative stress. The latter findings are an additional cause of concern about the long-term toxicity of occasional waterpipe smoking.


Asunto(s)
Plaquetas , Estrés Oxidativo , Agregación Plaquetaria , Fumar en Pipa de Agua , Animales , Femenino , Masculino , Ratones , Plaquetas/metabolismo , Selectina E/sangre , Ratones Endogámicos BALB C , Selectina-P/sangre , Tiempo de Protrombina , Tromboplastina/metabolismo , Fumar en Pipa de Agua/efectos adversos , Fumar en Pipa de Agua/sangre
6.
ScientificWorldJournal ; 2022: 4102960, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330351

RESUMEN

Pits of dates (Phoenix dactylifera L.) have numerous nutritional benefits that could have wide-ranging applications. This study aimed to examine the effects of administering three extracts from powdered date pits on some basic physiological parameters, plasma constituents, reproductive hormones, and testicular histology in CD1 male mice. Three groups received doses of 100 mg/kg/day of lyophilized extract, a nonpolar fraction, and a polar fraction of date pits by oral gavage for 28 consecutive days. For the control, one group was administered a 1 mL/kg concentration of distilled water. The three different extracts significantly increased the plasma testosterone level but showed no significant effect on estradiol or luteinizing hormone levels, except for estradiol reduction in the polar extract group. The measured physiological or biochemical parameters or testicular histology also demonstrated no significant differences between the control mice and those mice treated with the three extracts, except for reductions in plasma urea in all extracts and in total protein in the nonpolar extract. Therefore, date pit extracts may potentially be used as a safe and effective dietary supplement. However, further investigation is needed.


Asunto(s)
Phoeniceae , Extractos Vegetales , Ratones , Masculino , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Testículo , Estradiol/farmacología
7.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35054930

RESUMEN

Inhalation of particulate matter in polluted air causes direct, size-restricted passage in the circulation and pronounced lung inflammation, provoking platelet activation and (non)-fatal cardiovascular complications. To determine potency and mechanism of platelet sensitization via neutrophil enzymes, we performed in vitro aggregation studies in washed human platelets and in murine and human blood, in the presence of elastase, cathepsin G and regular platelet agonists, present in damaged arteries. The impact of both enzymes on in vivo thrombogenicity was studied in the same thrombosis mouse model, previously having demonstrated that neutrophil activation enhances peripheral thrombogenicity. At 0.05 U/mL, cathepsin G activated washed human platelets via PAR1, whereas at 0.35 U/mL, aggregation occurred via PAR4. In Swiss mouse platelet-rich plasma no aggregation occurred by cathepsin G at 0.4 U/mL. In human and murine blood, aggregations by 0.05-0.1 U/mL cathepsin G were similar and not PAR-mediated, but platelet aggregation was inhibited by ADP antagonists, advocating cathepsin G-released ADP in blood as the true agonist of sustained platelet activation. In the mouse thrombosis model, cathepsin G and elastase amplified mild thrombogenicity at blood concentrations that activated platelets in vitro. This study shows that cathepsin G and elastase secreted in the circulation during mild air pollution-induced lung inflammation lyse red blood cell membrane proteins, leading to ADP-leakage into plasma, sensitizing platelets and amplifying their contribution to cardiovascular complications of ambient particle inhalation.


Asunto(s)
Arterias/metabolismo , Plaquetas/metabolismo , Catepsina G/metabolismo , Neutrófilos/metabolismo , Activación Plaquetaria , Trombosis/etiología , Trombosis/metabolismo , Adenosina Difosfato/metabolismo , Animales , Arterias/patología , Biomarcadores , Catepsina G/genética , Susceptibilidad a Enfermedades , Humanos , Ratones , Ratones Noqueados , Activación Neutrófila , Elastasa Pancreática/metabolismo , Activación Plaquetaria/genética , Agregación Plaquetaria/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Trombosis/patología
8.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L791-L802, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33719568

RESUMEN

Waterpipe smoking (WPS) prevalence is increasing globally. Clinical and laboratory investigations reported that WPS triggers impairment of pulmonary function, inflammation, and oxidative stress. However, little is known if smoking cessation (SC) would reverse the adverse pulmonary effects induced by WPS. Therefore, we evaluated the impact of WPS inhalation for 3 mo followed by 3 mo of SC (air exposure) compared with those exposed for either 3 or 6 mo to WPS or air (control) in C57BL/6 mice. To this end, various physiological, biochemical, and histological endpoints were evaluated in the lung tissue. Exposure to WPS caused focal areas of dilated alveolar spaces and foci of widening of interalveolar spaces with peribronchiolar moderate mixed inflammatory cells consisting of lymphocytes, macrophages, and neutrophil polymorphs. The latter effects were mitigated by SC. Likewise, SC reversed the increase of airway resistance and reduced the increase in the levels of myeloperoxidase, matrix metalloproteinase 9, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß in lung tissue induced by WPS. In addition, SC attenuated the increase of oxidative stress markers including 8-isoprostane, glutathione, and catalase induced by WPS. Similarly, DNA damage, apoptosis, and the expression of NF-κB in the lung induced by WPS inhalation were alleviated by CS. In conclusion, our data demonstrated, for the first time, to our knowledge, that SC-mitigated WPS inhalation induced an increase in airway resistance, inflammation, oxidative stress, DNA injury, and apoptosis, illustrating the benefits of SC on lung physiology.


Asunto(s)
Inflamación/prevención & control , Exposición por Inhalación/efectos adversos , Estrés Oxidativo , Hipersensibilidad Respiratoria/prevención & control , Lesión por Inhalación de Humo/prevención & control , Cese del Hábito de Fumar/métodos , Fumar en Pipa de Agua/efectos adversos , Animales , Catalasa/metabolismo , Daño del ADN , Femenino , Glutatión/metabolismo , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Hipersensibilidad Respiratoria/etiología , Hipersensibilidad Respiratoria/metabolismo , Hipersensibilidad Respiratoria/patología , Lesión por Inhalación de Humo/etiología , Lesión por Inhalación de Humo/metabolismo , Lesión por Inhalación de Humo/patología , Factor de Necrosis Tumoral alfa/metabolismo
9.
Cell Physiol Biochem ; 55(1): 1-16, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33443844

RESUMEN

BACKGROUND/AIMS: Exposure to particulate air pollution is associated with increased cardiovascular morbidity and mortality. These effects are particularly aggravated in patients with pre-existing kidney diseases. Cerium oxide nanoparticles (CNPs), used as diesel fuel additives, are emitted in vehicle exhaust and affect humans when inhaled. However, thrombotic and cardiac injury resulting from pulmonary exposure to CNPs in experimental acute kidney injury (AKI) is not fully understood. The objective of the present study was to evaluate the thrombotic and cardiac injury effects of CNPs in a rat model of AKI. METHODS: AKI was induced in rats by a single intraperitoneal injection of cisplatin (CDDP, 6 mg/kg). Six days after injection, rats were intratracheally (i.t.) instilled with either CNPs (1 mg/kg) or saline (control), and various cardiovascular variables and markers of inflammation, oxidative stress and DNA injury were assessed by enzyme linked immunosorbent assay, colorimetric assay, single-cell gel electrophoresis assay and immunohistochemistry, the following day. RESULTS: Compared with individual CDDP or CNPs treatments, the combined CDDP + CNPs treatment elevated significantly the coagulation function, relative heart weight, and troponin I, lactate dehydrogenase, interleukin-6 (IL-6), tumor necrosis factor α (TNFα), and total nitric oxide levels in the plasma. In heart homogenates, the combination of CDDP and CNPs induced a significant increase in IL-6, TNFα, catalase, and glutathione. Furthermore, significantly more DNA damage was observed in this group than in the CDDP or CNPs groups. Immunohistochemical analysis of the heart revealed that expression of nuclear factor erythroid-derived 2-like 2 (Nrf2) and glutathione peroxidase by cardiac myocytes and endothelial cells was increased in the CDDP + CNPs group more than in either CDDP or CNPs group. CONCLUSION: I.t. administration of CNPs in rats with AKI exacerbated systemic inflammation, oxidative stress, and coagulation events. It also aggravated cardiac inflammation, DNA damage, and Nrf2 expression.


Asunto(s)
Lesión Renal Aguda , Coagulación Sanguínea/efectos de los fármacos , Cerio/toxicidad , Cisplatino/efectos adversos , Lesiones Cardíacas , Nanopartículas/toxicidad , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Cisplatino/farmacología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Lesiones Cardíacas/inducido químicamente , Lesiones Cardíacas/metabolismo , Lesiones Cardíacas/patología , Masculino , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas , Ratas Wistar
10.
Int J Mol Sci ; 22(22)2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34830434

RESUMEN

Metabolic reprogramming has been recognized as an essential emerging cancer hallmark. Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), has been reported to have anti-cancer effects by reversing tumor-associated glycolysis. This study was performed to explore the anti-cancer potential of DCA in lung cancer alone and in combination with chemo- and targeted therapies using two non-small cell lung cancer (NSCLC) cell lines, namely, A549 and LNM35. DCA markedly caused a concentration- and time-dependent decrease in the viability and colony growth of A549 and LNM35 cells in vitro. DCA also reduced the growth of tumor xenografts in both a chick embryo chorioallantoic membrane and nude mice models in vivo. Furthermore, DCA decreased the angiogenic capacity of human umbilical vein endothelial cells in vitro. On the other hand, DCA did not inhibit the in vitro cellular migration and invasion and the in vivo incidence and growth of axillary lymph nodes metastases in nude mice. Treatment with DCA did not show any toxicity in chick embryos and nude mice. Finally, we demonstrated that DCA significantly enhanced the anti-cancer effect of cisplatin in LNM35. In addition, the combination of DCA with gefitinib or erlotinib leads to additive effects on the inhibition of LNM35 colony growth after seven days of treatment and to synergistic effects on the inhibition of A549 colony growth after 14 days of treatment. Collectively, this study demonstrates that DCA is a safe and promising therapeutic agent for lung cancer.


Asunto(s)
Reprogramación Celular/genética , Ácido Dicloroacético/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Células A549 , Animales , Glucólisis/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Metástasis de la Neoplasia , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Int J Mol Sci ; 21(7)2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32235542

RESUMEN

Engineered nanomaterials (ENMs) have gained huge importance in technological advancements over the past few years. Among the various ENMs, silver nanoparticles (AgNPs) have become one of the most explored nanotechnology-derived nanostructures and have been intensively investigated for their unique physicochemical properties. The widespread commercial and biomedical application of nanosilver include its use as a catalyst and an optical receptor in cosmetics, electronics and textile engineering, as a bactericidal agent, and in wound dressings, surgical instruments, and disinfectants. This, in turn, has increased the potential for interactions of AgNPs with terrestrial and aquatic environments, as well as potential exposure and toxicity to human health. In the present review, after giving an overview of ENMs, we discuss the current advances on the physiochemical properties of AgNPs with specific emphasis on biodistribution and both in vitro and in vivo toxicity following various routes of exposure. Most in vitro studies have demonstrated the size-, dose- and coating-dependent cellular uptake of AgNPs. Following NPs exposure, in vivo biodistribution studies have reported Ag accumulation and toxicity to local as well as distant organs. Though there has been an increase in the number of studies in this area, more investigations are required to understand the mechanisms of toxicity following various modes of exposure to AgNPs.


Asunto(s)
Antibacterianos/toxicidad , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Animales , Antibacterianos/análisis , Antibacterianos/metabolismo , Antibacterianos/farmacocinética , Humanos , Nanopartículas del Metal/análisis , Nanotecnología , Plata/análisis , Plata/metabolismo , Plata/farmacocinética , Distribución Tisular
12.
Int J Mol Sci ; 21(4)2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32075078

RESUMEN

The consumption of water-pipe smoking (WPS) has been promoted by the use of flavoured tobacco. However, little is known about the impact of flavouring on the cardiovascular toxicity induced by WPS inhalation. Here, we compared the cardiovascular effects and underlying mechanism of actions of plain (P) (unflavoured) versus apple-flavoured (AF) WPS (30 minutes/day, 5 days/week for 1 month) in mice. Control mice were exposed to air. Both P- and AF-WPS inhalation induced an increase in systolic blood pressure, thrombogenicity and plasma concentration of fibrinogen and von Willebrand factor. In heart homogenates, AF-WPS inhalation caused an increase of 8-isoprostane and a decrease in the levels of reduced glutathione (GSH) and superoxide dismutase (SOD). Nevertheless, P-WPS decreased only the activity of SOD. The concentrations of tumour necrosis factor α and interleukin 1ß were increased only in heart homogenates of mice exposed to AF-WPS. Although both P- and AF-WPS increased the concentration of troponin I in heart homogenates and induced DNA damage, the concentration of cleaved caspase 3 was only increased in mice exposed to AF-WPS. Immunohistochemical analysis of the hearts showed that both P- and AF- WPS inhalation decreased the expression of SOD. Moreover, the expression of nuclear factor erythroid-derived 2-like 2 at nuclear level in the heart was higher in both AF-WPS and P-WPS compared with control group, and the effect observed in AF-WPS group was more significant than that seen in P-WPS group. Likewise, the concentration of heme oxygenase-1 was significantly increased in both P-WPS and AF-WPS groups compared with control group, and the effect seen in AF-group was higher than that observed in P-WPS group. In conclusion, our findings showed that both P- and AF-WPS induce thrombogenicity and cardiac injury, and that this toxicity is potentiated by the presence of flavouring.


Asunto(s)
Aromatizantes/farmacología , Miocardio/patología , Estrés Oxidativo/efectos de los fármacos , Fumar , Tabaco para Pipas de Agua/toxicidad , Animales , Presión Sanguínea/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Fibrinógeno/análisis , Aromatizantes/química , Glutatión/metabolismo , Hemo-Oxigenasa 1/metabolismo , Interleucina-1beta/metabolismo , Ratones , Miocardio/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Tiempo de Protrombina , Superóxido Dismutasa/metabolismo , Troponina I/metabolismo , Regulación hacia Arriba/efectos de los fármacos
13.
Cell Physiol Biochem ; 52(3): 439-454, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30873820

RESUMEN

BACKGROUND/AIMS: Cerium oxide nanoparticles (CeO2 NPs) are released from diesel engines that use cerium compounds as a catalytic agent to decrease the diesel exhaust particles, leading to human exposure by inhalation to CeO2 NPs. We have recently demonstrated that pulmonary exposure to CeO2 NPs induces lung inflammation, thrombosis, and oxidative stress in various organs including kidneys. It is well known that particulate air pollution effects are greater in patients with renal diseases. The aim of this study is to investigate the effects of pulmonary exposure to CeO2 NPs in a rat model of acute kidney injury (AKI). METHODS: AKI was induced in rats by a single intraperitoneal injection of cisplatin (CP, 6 mg/kg). Six days later, the rats were intratracheally (i.t.) instilled with either CeO2 NPs (1 mg/kg) or saline (control), and various renal and pulmonary endpoints were assessed 24 h afterward using histological, colorimetric assay, enzyme-linked immunosorbent assay and Comet assay techniques. RESULTS: CP alone decreased body weight, and increased water intake, urine volume and relative kidney weight. CP also increased the plasma concentrations urea and creatinine, and decreased creatinine clearance. In the kidneys, CP significantly increased renal injury molecule-1, interleukin-6 (IL-6), tumor necrosis factor α (TNFα) and glutathione concentrations, and caused renal tubular necrosis, and DNA injury assessed by Comet assay. All these actions were significantly aggravated in rats given both CP and CeO2 NPs. Histopathological changes in lungs of CeO2 NPs-treated rats included marked interstitial cell infiltration and congestion. These were aggravated by the combination of CP + CeO2 NPs. Moreover, this combination exacerbated the increase in the concentrations of TNFα and IL-6, and the decrease in the activity of pulmonary catalase and total nitric oxide concentration, and lung DNA damage. CONCLUSION: We conclude that the presence of CeO2 NPs in the lung exacerbated the renal and lung effects of CP-induced AKI.


Asunto(s)
Lesión Renal Aguda/patología , Cerio/toxicidad , Riñón/patología , Pulmón/patología , Nanopartículas/toxicidad , Neumonía/patología , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/fisiopatología , Administración por Inhalación , Animales , Catalasa/antagonistas & inhibidores , Catalasa/metabolismo , Cisplatino/administración & dosificación , Creatinina/sangre , Fragmentación del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Interleucina-6/biosíntesis , Intubación Intratraqueal , Riñón/efectos de los fármacos , Riñón/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Material Particulado/toxicidad , Neumonía/inducido químicamente , Neumonía/metabolismo , Neumonía/fisiopatología , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa/biosíntesis , Urea/sangre , Emisiones de Vehículos/toxicidad
14.
Cell Physiol Biochem ; 52(1): 27-39, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30790503

RESUMEN

BACKGROUND/AIMS: SGLT-2 inhibitors have been shown to be nephroprotective in diabetes. Here, we examined if one of these drugs (canagliflozin) could also ameliorate non-diabetic chronic kidney disease (CKD). METHODS: CKD was induced in rats by feeding them adenine (0.25%w/w for 35 days) and canagliflozin (10 or 25 mg/kg, by gavage) was given with or without adenine. Several conventional and novel plasma and urine biomarkers and tissues morphology were used to investigate the canagliflozin effect on kidney structure and function. RESULTS: Rats fed adenine showed the typical features of CKD that included elevation of blood pressure, decreased food intake and growth, increased water intake and urine output, decrease in creatinine clearance, and increase in urinary albumin/creatinine ratio, liver-type fatty acid binding protein, N-acetyl-beta-D-glucosaminidase, and plasma urea, creatinine, uric acid, calcium, indoxyl sulfate and phosphorus concentrations. Adenine also increased concentrations of several biomarkers of inflammation such as neutrophil gelatinase-associated lipocalin, interleukin-6, tumor necrosis factor alpha, clusterin, cystatin C and interleukin-1ß, and decreased some oxidative biomarkers in kidney homogenate, such as superoxide dismutase, catalase, glutathione reductase, total antioxidant activity, and also urinary 8-isoprostane and urinary 8-hydroxy-2-deoxy guanosine. Adenine significantly increased the renal protein content of Nrf2, caused renal tubular necrosis and fibrosis. Given alone, canagliflozin at the two doses used did not significantly alter any of the parameters mentioned above. When canagliflozin was given concomitantly with adenine, it significantly and dose - dependently ameliorated all the measured adenine - induced actions. CONCLUSION: Canagliflozin ameliorated adenine - induced CKD in rats, through reduction of several inflammatory and oxidative stress parameters, and other indices such as uremic toxins, and by antagonizing the increase in the renal content of the transcription factor Nrf2. The drug caused no overt or significant untoward effects, and its trial in patients with CKD may be warranted.


Asunto(s)
Adenina/efectos adversos , Canagliflozina/farmacología , Insuficiencia Renal Crónica , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Transportador 2 de Sodio-Glucosa/metabolismo , Adenina/farmacología , Animales , Biomarcadores/orina , Ratas , Ratas Wistar , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/prevención & control , Insuficiencia Renal Crónica/orina
15.
Toxicol Appl Pharmacol ; 367: 36-50, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30639276

RESUMEN

Pulmonary exposure to silver nanoparticles (AgNPs) revealed the potential of nanoparticles to cause pulmonary toxicity, cross the alveolar-capillary barrier, and distribute to remote organs. However, the mechanism underlying the effects of AgNPs on the cardiovascular system remains unclear. Hence, we investigated the cardiovascular mechanisms of pulmonary exposure to AgNPs (10 nm) with varying coatings [polyvinylpyrrolidone (PVP) and citrate (CT)], concentrations (0.05, 0.5 and 5 mg/kg body weight), and time points (1 and 7 days) in BALB/C mice. Silver ions (Ag+) were used as ionic control. Exposure to AgNPs induced lung inflammation. In heart, tumor necrosis factor α, interleukin 6, total antioxidants, reduced glutathione and 8-isoprostane significantly increased for both AgNPs. Moreover, AgNPs caused oxidative DNA damage and apoptosis in the heart. The plasma concentration of fibrinogen, plasminogen activation inhibitor-1 and brain natriuretic peptide were significantly increased for both coating AgNPs. Likewise, the prothrombin time and activated partial thromboplastin time were significantly decreased. Additionally, the PVP- and CT- AgNPs induced a significant dose-dependent increase in thrombotic occlusion time in cerebral microvessels at both time points. In vitro study on mice whole blood exhibited significant platelet aggregation for both particle types. Compared with AgNPs, Ag+ increased thrombogenicity and markers of oxidative stress, but did not induce either DNA damage or apoptosis in the heart. In conclusion, pulmonary exposure to AgNPs caused cardiac oxidative stress, DNA damage and apoptosis, alteration of coagulation markers and thrombosis. Our findings provide a novel mechanistic insight into the cardiovascular pathophysiological effects of lung exposure to AgNPs.


Asunto(s)
Coagulación Sanguínea/efectos de los fármacos , Ácido Cítrico/toxicidad , Cardiopatías/inducido químicamente , Trombosis Intracraneal/inducido químicamente , Nanopartículas del Metal/toxicidad , Miocitos Cardíacos/efectos de los fármacos , Povidona/toxicidad , Plata/toxicidad , Animales , Apoptosis/efectos de los fármacos , Cardiotoxicidad , Daño del ADN , Relación Dosis-Respuesta a Droga , Femenino , Cardiopatías/metabolismo , Cardiopatías/patología , Mediadores de Inflamación/metabolismo , Exposición por Inhalación , Trombosis Intracraneal/sangre , Masculino , Ratones Endogámicos BALB C , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Estrés Oxidativo/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Propiedades de Superficie , Factores de Tiempo
16.
Am J Physiol Heart Circ Physiol ; 314(5): H917-H927, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29351455

RESUMEN

Adverse cardiovascular effects of particulate air pollution persist even at lower concentrations than those of the current air quality limit. Therefore, identification of safe and effective measures against particle-induced cardiovascular toxicity is needed. Nootkatone is a sesquiterpenoid in grapefruit with diverse bioactivities including anti-inflammatory and antioxidant effects. However, its protective effect on the cardiovascular injury induced by diesel exhaust particles (DEPs) has not been studied before. We assessed the possible protective effect of nootkatone (90 mg/kg) administered by gavage 1 h before intratracheal instillation of DEPs (30 µg/mouse). Twenty-four hours after the intratracheal administration of DEPs, various thrombotic and cardiac parameters were assessed. Nootkatone inhibited the prothrombotic effect induced by DEPs in pial arterioles and venules in vivo and platelet aggregation in whole blood in vitro. Also, nootkatone prevented the shortening of activated partial thromboplastin time and prothrombin time induced by DEPs. Nootkatone inhibited the increase of plasma concentration of fibrinogen, plasminogen activator inhibitor-1, interleukin-6, and lipid peroxidation induced by DEPs. Immunohistochemically, hearts showed an analogous increase in glutathione and nuclear factor erythroid-derived 2-like 2 expression by cardiac myocytes and endothelial cells after DEP exposure, and these effects were enhanced in mice treated with nootkatone + DEPs. Likewise, heme oxygenase-1 was increased in mice treated with nootkatone + DEPs compared with those treated with DEPs or nootkatone + saline. The DNA damage caused by DEPs was prevented by nootkatoone pretreatment. In conclusion, nootkatoone alleviates DEP-induced thrombogenicity and systemic and cardiac oxidative stress and DNA damage, at least partly, through nuclear factor erythroid-derived 2-like 2 and heme oxygenase-1 activation. NEW & NOTEWORTHY Nootkatoone, a sesquiterpenoid found in grapefruit, alleviates the thrombogenicity and systemic and cardiac oxidative stress and DNA damage in mice exposed to diesel exhaust particles. Nootkatone-induced boosting of nuclear factor erythroid-derived 2-like 2 and heme oxygenase-1 levels in the heart of mice exposed to diesel exhaust particles suggests that its protective effect is, at least partly, mediated through nuclear factor erythroid-derived 2-like 2 and heme oxygenase-1 activation.


Asunto(s)
Antioxidantes/farmacología , Plaquetas/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Fibrinolíticos/farmacología , Trombosis Intracraneal/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sesquiterpenos/farmacología , Emisiones de Vehículos , Animales , Coagulación Sanguínea/efectos de los fármacos , Plaquetas/metabolismo , Plaquetas/patología , Modelos Animales de Enfermedad , Femenino , Hemo-Oxigenasa 1/metabolismo , Exposición por Inhalación , Trombosis Intracraneal/sangre , Trombosis Intracraneal/inducido químicamente , Trombosis Intracraneal/patología , Peroxidación de Lípido/efectos de los fármacos , Masculino , Proteínas de la Membrana/metabolismo , Ratones Endogámicos BALB C , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factor 2 Relacionado con NF-E2/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Sesquiterpenos Policíclicos
17.
Cell Physiol Biochem ; 49(4): 1577-1588, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30223265

RESUMEN

BACKGROUND/AIMS: Silver nanoparticles (AgNPs) are increasingly used as antimicrobial agents and drug carriers in various biomedical fields. AgNPs can encounter erythrocytes either directly following intravenous injection, or indirectly via translocation from the site of administration. However, information regarding the pathophysiological effects and possible mechanism of action of AgNPs on the erythrocytes are still inadequately studied. Thus, the aim of our study was to investigate the mechanism underlying the effect of coating and concentration of AgNPs on mouse erythrocytes in vitro. METHODS: We studied the interaction of polyvinylpyrrolidone (PVP) and citrate (CT) coated AgNPs (10 nm) at various concentrations (2.5, 10, 40 µg/ml) with mouse erythrocytes in vitro using various techniques including transmission electron microscopy (TEM), hemolysis, and colorimetric measurement of markers of oxidative stress comprising malondialdehyde (MDA), reduced glutathione (GSH), and catalase (CAT). Intracellular calcium (Ca2+) was determined using Fura 2AM fluorescence. Annexin V was quantified using ELISA and the caspase 3 was determined both flurometrically and by western blot technique. RESULTS: Following incubation of the erythrocytes with AgNPs, both PVP- and CT- AgNPs induced significant and dose - dependent increase in hemolysis. TEM revealed that both PVP- and CT- AgNPs were taken up by erythrocytes. The erythrocyte susceptibility to lipid peroxidation measured by MDA was significantly increased in both PVP-and CT- AgNPs. The concentration of GSH and CAT activity were significantly decreased by both types of AgNPs. Additionally, PVP- and CT- AgNPs significantly increased intracellular Ca2+ in a dose -dependent manner. Likewise, the concentration of the cellular protein annexin V was significantly and dose - dependently enhanced by both types of AgNPs. Furthermore, PVP- and CT- AgNPs induced significant increase in calpain activity in incubated erythrocytes. CONCLUSION: We conclude that both PVP- and CT- AgNPs causes hemolysis, and are taken up by erythrocytes. Moreover, we demonstrated that AgNPs induces oxidative stress and eryptosis. These findings provide evidence for the potential pathophysiological effect of PVP-and CT- AgNPs on erythrocyte physiology.


Asunto(s)
Ácido Cítrico/química , Eriptosis/efectos de los fármacos , Nanopartículas del Metal/química , Estrés Oxidativo/efectos de los fármacos , Povidona/química , Plata/química , Animales , Calcio/metabolismo , Caspasa 3/metabolismo , Catalasa/metabolismo , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Glutatión/metabolismo , Hemólisis/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Malondialdehído/metabolismo , Nanopartículas del Metal/toxicidad , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Ratas
18.
Cell Physiol Biochem ; 45(6): 2293-2304, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29550811

RESUMEN

BACKGROUND/AIMS: The effect of treatment with gum acacia (GA), a prebiotic shown previously to ameliorate chronic kidney disease (CKD), in diabetic and non - diabetic rats with adenine - induced CKD has been investigated using several conventional and novel physiological, biochemical, and histopathological parameters. METHODS: Diabetes mellitus was induced in rats by a single injection of streptozotocin (STZ). Diabetic and non - diabetic rats were randomly divided into several groups, and given either normal food or food mixed with adenine (0.25% w/w, for five weeks) to induce CKD. Some of these groups were also concomitantly treated orally with GA in the drinking water (15% w/w). RESULTS: Rats fed adenine alone exhibited physiological (decreased body weight, increased food and water intake and urine output), biochemical (increase in urinary albumin/creatinine ratio, plasma urea and, creatinine, indoxyl sulfate and phosphorus), inflammatory biomarkers (increased in neutrophil gelatinase-associated lipocalin, transforming growth factor beta -1, tumor necrosis factor alpha, adiponectin, cystatin C and interleukin-1ß), oxidative biomarkers (8-isoprostane, 8 -hydroxy -2-deoxy guanosine), nitrosative stress biomarkers (nitrite and nitrate) and histopathological (increase in tubular necrosis and fibrosis) signs of CKD. STZ - induced diabetes alone worsened most of the renal function tests measured. Administration of adenine in STZ - diabetic rats further worsened the renal damage induced by adenine alone. GA significantly ameliorated the renal actions of adenine and STZ, given either singly or in combination, especially with regards to the histopathological damage. CONCLUSION: GA is a useful dietary agent in attenuating the progression of CKD in rats with streptozotocin-induced diabetes.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Goma Arábiga/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico , Acacia/química , Adenina , Animales , Diabetes Mellitus Experimental/patología , Modelos Animales de Enfermedad , Goma Arábiga/química , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Inflamación/patología , Riñón/efectos de los fármacos , Riñón/patología , Masculino , Estrés Nitrosativo/efectos de los fármacos , Ratas , Ratas Wistar , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/patología
19.
Am J Physiol Heart Circ Physiol ; 312(2): H329-H339, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27940964

RESUMEN

Water-pipe tobacco smoking is becoming prevalent in all over the world including Western countries. There are limited data on the cardiovascular effects of water-pipe smoke (WPS), in particular following chronic exposure. Here, we assessed the chronic cardiovascular effects of nose-only WPS exposure in C57BL/6 mice. The duration of the session was 30 minutes/day, 5 days/week for 6 consecutive months. Control mice were exposed to air. WPS significantly increased systolic blood pressure. The relative heart weight and plasma concentrations of troponin-I and B-type natriuretic peptide were increased in mice exposed to WPS. Arterial blood gas analysis showed that WPS caused a significant decrease in [Formula: see text] and an increase in [Formula: see text] WPS significantly shortened the thrombotic occlusion time in pial arterioles and venules and increased the number of circulating platelet. Cardiac lipid peroxidation, measured as thiobarbituric acid-reactive substances, was significantly increased, while superoxide dismutase activity, total nitric oxide activity, and glutathione concentration were reduced by WPS exposure. Likewise, immunohistochemical analysis of the heart revealed an increase in the expression of inducible nitric oxide synthase and cytochrome c by cardiomyocytes of WPS-exposed mice. Moreover, hearts of WPS-exposed mice showed the presence of focal interstitial fibrosis. WPS exposure significantly increased heart DNA damage assessed by Comet assay. We conclude that chronic nose-only exposure to WPS impairs cardiovascular homeostasis. Our findings provide evidence that long-term exposure to WPS is harmful to the cardiovascular system and supports interventions to control the spread of WPS, particularly amid youths.NEW & NOTEWORTHY No data are available on the chronic cardiovascular effects of water-pipe smoke (WPS). Our findings provide experimental evidence that chronic exposure to WPS increased blood pressure, relative heart weight, troponin I, and B-type natriuretic peptide in plasma and induced hypoxemia, hypercapnia, and thrombosis. Moreover, WPS caused cardiac oxidative stress, DNA damage, and fibrosis.


Asunto(s)
Dióxido de Carbono/sangre , Miocardio/metabolismo , Péptido Natriurético Encefálico/sangre , Nicotiana , Oxígeno/sangre , Humo , Troponina I/sangre , Animales , Arteriolas , Análisis de los Gases de la Sangre , Presión Sanguínea , Carboxihemoglobina/metabolismo , Ensayo Cometa , Citocromos c/metabolismo , Daño del ADN , Fibrosis , Glutatión/metabolismo , Corazón , Inmunohistoquímica , Peroxidación de Lípido , Ratones , Ratones Endogámicos C57BL , Miocardio/patología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Presión Parcial , Piamadre , Recuento de Plaquetas , Fumar , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Trombosis/sangre , Factores de Tiempo , Vénulas
20.
Cell Physiol Biochem ; 41(3): 1098-1112, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28245471

RESUMEN

BACKGROUND/AIMS: It has been shown, both experimentally and clinically, that water-pipe smoke (WPS) exposure adversely affects the cardiovascular system (CVS) through the generation of oxidative stress and inflammation. Betaine, a naturally occurring compound in common foods, has antioxidant and anti-inflammatory actions. However, its potential to mitigate the adverse effect of WPS on the CVS has never been reported before. This is the subject of this study in mice. METHODS: Mice were exposed daily for 30 min to either normal air (control), or to WPS for two consecutive weeks. Betaine was administered daily by gavage at a dose of 10mg/kg, 1h before either air or WPS exposure. RESULTS: Betaine mitigated the in vivo prothrombotic effect of WPS in pial arterioles and venules. Moreover, it reversed the WPS-induced decrease in circulating platelets. Likewise, betaine alleviated platelet aggregation in vitro, and the shortening of activated partial thromboplastin time and prothrombin time induced by WPS. Betaine reduced the increase of plasminogen activator inhibitor-1 and fibrinogen concentrations in plasma induced by WPS. Betaine also diminished the WPS-induced increase of plasma concentrations of interleukin 6 and tumor necrosis factor α, and attenuated the increase of lipid peroxidation and superoxide dismutase. Immunohistochemical analysis of the heart revealed an increase in the expression of inducible nitric oxide synthase and cytochrome C by cardiomyocytes of the WPS-exposed mice. These effects were averted by betaine. CONCLUSION: Our findings suggest that betaine treatment significantly mitigated WPS-induced hypercoagulability, and inflammation, as well as systemic and cardiac oxidative stress.


Asunto(s)
Antioxidantes/farmacología , Betaína/farmacología , Fumar/efectos adversos , Trombocitopenia/prevención & control , Trombosis/prevención & control , Administración Oral , Animales , Plaquetas/citología , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Fibrinógeno/genética , Fibrinógeno/metabolismo , Expresión Génica/efectos de los fármacos , Interleucina-6/genética , Interleucina-6/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Estrés Oxidativo/efectos de los fármacos , Tiempo de Tromboplastina Parcial , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Cultivo Primario de Células , Tiempo de Protrombina , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Trombocitopenia/etiología , Trombocitopenia/metabolismo , Trombocitopenia/patología , Trombosis/etiología , Trombosis/metabolismo , Trombosis/patología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA