Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Hepatol ; 68(5): 1006-1017, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29273475

RESUMEN

BACKGROUND & AIMS: Plectin, a highly versatile cytolinker protein, controls intermediate filament cytoarchitecture and cellular stress response. In the present study, we investigate the role of plectin in the liver under basal conditions and in experimental cholestasis. METHODS: We generated liver-specific plectin knockout (PleΔalb) mice and analyzed them using two cholestatic liver injury models: bile duct ligation (BDL) and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) feeding. Primary hepatocytes and a cholangiocyte cell line were used to address the impact of plectin on keratin filament organization and stability in vitro. RESULTS: Plectin deficiency in hepatocytes and biliary epithelial cells led to aberrant keratin filament network organization, biliary tree malformations, and collapse of bile ducts and ductules. Further, plectin ablation significantly aggravated biliary damage upon cholestatic challenge. Coincidently, we observed a significant expansion of A6-positive progenitor cells in PleΔalb livers. After BDL, plectin-deficient bile ducts were prominently dilated with more frequent ruptures corresponding to an increased number of bile infarcts. In addition, more abundant keratin aggregates indicated less stable keratin filaments in PleΔalb hepatocytes. A transmission electron microscopy analysis revealed a compromised tight junction formation in plectin-deficient biliary epithelial cells. In addition, protein profiling showed increased expression of the adherens junction protein E-Cadherin, and inefficient upregulation of the desmosomal protein desmoplakin in response to BDL. In vitro analyses revealed a higher susceptibility of plectin-deficient keratin networks to stress-induced collapse, paralleled by elevated activation of p38 MAP kinase. CONCLUSION: Our study shows that by maintaining proper keratin network cytoarchitecture and biliary epithelial stability, plectin plays a critical role in protecting the liver from stress elicited by cholestasis. LAY SUMMARY: Plectin is a cytolinker protein capable of interconnecting all three cytoskeletal filament systems and linking them to plasma membrane-bound junctional complexes. In liver, the plectin-controlled cytoskeleton mechanically stabilizes epithelial cells and provides them with the capacity to adapt to increased bile pressure under cholestasis.


Asunto(s)
Sistema Biliar/metabolismo , Sistema Biliar/patología , Colestasis/metabolismo , Colestasis/patología , Plectina/metabolismo , Animales , Sistema Biliar/anomalías , Epitelio/metabolismo , Epitelio/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Queratinas/metabolismo , Hígado/anomalías , Hígado/metabolismo , Hígado/patología , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Noqueados , Plectina/deficiencia , Plectina/genética , Estabilidad Proteica , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
2.
BMC Endocr Disord ; 17(1): 48, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28774305

RESUMEN

BACKGROUND: Hypoxia inducible factor 1 (HIF-1) activates protective pathways to counteract hypoxia and prevent tissue damage in conjunction with renal injury. The aim of this study was to evaluate a role of HIF-1 in diabetes-induced kidney damage. METHODS: We used a streptozotocin-induced diabetes mouse model and compared biochemical, histological and molecular parameters associated with kidney damage in Hif1α deficient (Hif1α +/- ) and wild-type mice. RESULTS: We showed that Hif1α deficiency accelerated pathological changes in the early stage of DN. Six weeks after diabetes-induction, Hif1α deficient mice showed more prominent changes in biochemical serum parameters associated with glomerular injury, increased expression of podocyte damage markers, and loss of podocytes compared to wild-type mice. These results indicate that Hif1α deficiency specifically affects podocyte survival in the early phase of DN, resulting in diabetic glomerular injury. In contrast, renal fibrosis was not affected by the global reduction of Hif1α, at least not in the early phase of diabetic exposure. CONCLUSIONS: Together our data reveal that HIF-1 has an essential role in the early response to prevent diabetes-induced tissue damage and that impaired HIF-1 signaling results in a faster progression of DN. Although the modulation of HIF-1 activity is a high-priority target for clinical treatments, further study is required to investigate HIF-1 as a potential therapeutic target for the treatment of DN.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/etiología , Modelos Animales de Enfermedad , Subunidad alfa del Factor 1 Inducible por Hipoxia/deficiencia , Animales , Diabetes Mellitus Experimental/fisiopatología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Ratones , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA