Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biomech Eng ; 146(8)2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38470376

RESUMEN

Individuals with transtibial amputation (TTA) experience asymmetric lower-limb loading which can lead to joint pain and injuries. However, it is unclear how walking over unexpected uneven terrain affects their loading patterns. This study sought to use modeling and simulation to determine how peak joint contact forces and impulses change for individuals with unilateral TTA during an uneven step and subsequent recovery step and how those patterns compare to able-bodied individuals. We expected residual limb loading during the uneven step and intact limb loading during the recovery step would increase relative to flush walking. Further, individuals with TTA would experience larger loading increases compared to able-bodied individuals. Simulations of individuals with TTA showed during the uneven step, changes in joint loading occurred at all joints except the prosthetic ankle relative to flush walking. During the recovery step, intact limb joint loading increased in early stance relative to flush walking. Simulations of able-bodied individuals showed large increases in ankle joint loading for both surface conditions. Overall, increases in early stance knee joint loading were larger for those with TTA compared to able-bodied individuals during both steps. These results suggest that individuals with TTA experience altered joint loading patterns when stepping on uneven terrain. Future work should investigate whether an adapting ankle-foot prosthesis can mitigate these changes to reduce injury risk.


Asunto(s)
Miembros Artificiales , Marcha , Humanos , Fenómenos Biomecánicos , Caminata , Amputación Quirúrgica , Articulación del Tobillo
2.
J Biomech Eng ; 146(4)2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38270963

RESUMEN

The majority of manual wheelchair users (MWCU) develop shoulder pain or injuries, which is often caused by impingement. Because propulsion mechanics are influenced by the recovery hand pattern used, the pattern may affect shoulder loading and susceptibility to injury. Shoulder muscle weakness is also correlated with shoulder pain, but how shoulder loading changes with specific muscle group weakness is unknown. Musculoskeletal modeling and simulation were used to compare glenohumeral joint contact forces (GJCFs) across hand patterns and determine how GJCFs vary when primary shoulder muscle groups are weakened. Experimental data were analyzed to classify individuals into four hand pattern groups. A representative musculoskeletal model was then developed for each group and simulations generated to portray baseline strength and six muscle weakness conditions. Three-dimensional GJCF peaks and impulses were compared across hand patterns and muscle weakness conditions. The semicircular pattern consistently had lower shear (anterior-posterior and superior-inferior) GJCFs compared to other patterns. The double-loop pattern had the highest superior GJCFs, while the single-loop pattern had the highest anterior and posterior GJCFs. These results suggest that using the semicircular pattern may be less susceptible to shoulder injuries such as subacromial impingement. Weakening the internal rotators and external rotators resulted in the greatest increases in shear GJCFs and decreases in compressive GJCF, likely due to decreased force from rotator cuff muscles. These findings suggest that strengthening specific muscle groups, especially the rotator cuff, is critical for decreasing the risk of shoulder overuse injuries.


Asunto(s)
Articulación del Hombro , Silla de Ruedas , Humanos , Articulación del Hombro/fisiología , Hombro , Dolor de Hombro/etiología , Manguito de los Rotadores/fisiología , Debilidad Muscular/complicaciones , Fenómenos Biomecánicos
3.
J Appl Biomech ; 39(6): 403-413, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37704197

RESUMEN

Gait asymmetry is a predictor of fall risk and may contribute to increased falls during pregnancy. Previous work indicates that pregnant women experience asymmetric joint laxity and pelvic tilt during standing and asymmetric joint moments and angles during walking. How these changes translate to other measures of gait asymmetry remains unclear. Thus, the purpose of this case study was to determine the relationships between pregnancy progression, subsequent pregnancies, and gait asymmetry. Walking data were collected from an individual during 2 consecutive pregnancies during the second and third trimesters and 6 months postpartum of her first pregnancy and the first, second, and third trimesters and 6 months postpartum of her second pregnancy. Existing asymmetries in step length, anterior-posterior (AP) impulses, AP peak ground reaction forces, lateral impulses, and joint work systematically increased as her pregnancy progressed. These changes in asymmetry may be attributed to pelvic asymmetry, leading to asymmetric hip flexor and extensor length, or due to asymmetric plantar flexor strength, as suggested by her ankle work asymmetry. Relative to her first pregnancy, she had greater asymmetry in step length, step width, braking AP impulse, propulsive AP impulse, and peak braking AP ground reaction force during her second pregnancy, which may have resulted from increased joint laxity.


Asunto(s)
Inestabilidad de la Articulación , Humanos , Femenino , Embarazo , Marcha , Caminata , Embarazo Múltiple , Articulación del Tobillo , Fenómenos Biomecánicos
4.
J Neuroeng Rehabil ; 19(1): 55, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35659252

RESUMEN

BACKGROUND: Successful walking requires the execution of the pre-swing biomechanical tasks of body propulsion and leg swing initiation, which are often impaired post-stroke. While excess rectus femoris activity during swing is often associated with low knee flexion, previous work has suggested that deficits in propulsion and leg swing initiation may also contribute. The purpose of this study was to determine underlying causes of propulsion, leg swing initiation and knee flexion deficits in pre-swing and their link to stiff knee gait in individuals post-stroke. METHODS: Musculoskeletal models and forward dynamic simulations were developed for individuals post-stroke (n = 15) and healthy participants (n = 5). Linear regressions were used to evaluate the relationships between peak knee flexion, braking and propulsion symmetry, and individual muscle contributions to braking, propulsion, knee flexion in pre-swing, and leg swing initiation. RESULTS: Four out of fifteen of individuals post-stroke had higher plantarflexor contributions to propulsion and seven out of fifteen had higher vasti contributions to braking on their paretic leg relative to their nonparetic leg. Higher gastrocnemius contributions to propulsion predicted paretic propulsion symmetry (p = 0.005) while soleus contributions did not. Higher vasti contributions to braking in pre-swing predicted lower knee flexion (p = 0.022). The rectus femoris had minimal contributions to lower knee flexion acceleration in pre-swing compared to contributions from the vasti. However, for some individuals with low knee flexion, during pre-swing the rectus femoris absorbed more power and the iliopsoas contributed less power to the paretic leg. Total musculotendon work done on the paretic leg in pre-swing did not predict knee flexion during swing. CONCLUSIONS: These results emphasize the multiple causes of propulsion asymmetry in individuals post-stroke, including low plantarflexor contributions to propulsion, increased vasti contributions to braking and reliance on compensatory mechanisms. The results also show that the rectus femoris is not a major contributor to knee flexion in pre-swing, but absorbs more power from the paretic leg in pre-swing in some individuals with stiff knee gait. These results highlight the need to identify individual causes of propulsion and knee flexion deficits to design more effective rehabilitation strategies.


Asunto(s)
Pierna , Accidente Cerebrovascular , Fenómenos Biomecánicos , Marcha/fisiología , Humanos , Articulación de la Rodilla , Pierna/fisiología , Músculo Esquelético/fisiología , Accidente Cerebrovascular/complicaciones , Caminata/fisiología
5.
J Appl Biomech ; 38(6): 382-390, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36265840

RESUMEN

Skipping has been proposed as a viable cross-training exercise to running due to its lower knee contact forces and higher whole-body energy expenditure. However, how individual muscle forces, energy expenditure, and joint loading are affected by differences in running and skipping mechanics remains unclear. The purpose of this study was to compare individual muscle forces, energy expenditure, and lower extremity joint contact forces between running and skipping using musculoskeletal modeling and simulations of young adults (n = 5) performing running and skipping at 2.5 m·s-1 on an instrumented treadmill. In agreement with previous work, running had greater knee and patella contact forces than skipping which was accompanied by greater knee extensor energetic demand. Conversely, skipping had greater ankle contact forces and required greater energetic demand from the uniarticular ankle plantarflexors. There were no differences in hip contact forces between gaits. These findings further support skipping as a viable alternative to running if the primary goal is to reduce joint loading at the commonly injured patellofemoral joint. However, for those with ankle injuries, skipping may not be a viable alternative due to the increased ankle loads. These findings may help clinicians prescribe activities most appropriate for a patient's individual training or rehabilitation goals.


Asunto(s)
Carrera , Adulto Joven , Humanos , Fenómenos Biomecánicos , Carrera/fisiología , Marcha/fisiología , Articulación de la Rodilla/fisiología , Articulación del Tobillo/fisiología , Músculos
6.
J Appl Biomech ; 37(1): 21-29, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33152690

RESUMEN

The coupling between the residual limb and the lower-limb prosthesis is not rigid. As a result, external loading produces movement between the prosthesis and residual limb that can lead to undesirable soft-tissue shear stresses. As these stresses are difficult to measure, limb loading is commonly used as a surrogate. However, the relationship between limb loading and the displacements responsible for those stresses remains unknown. To better understand the limb motion within the socket, an inverse kinematic analysis was performed to estimate the motion between the socket and tibia for 10 individuals with a transtibial amputation performing walking and turning activities at 3 different speeds. The authors estimated the rotational stiffness of the limb-socket body to quantify the limb properties when coupled with the socket and highlight how this approach could help inform prosthetic prescriptions. Results showed that peak transverse displacement had a significant, linear relationship with peak transverse loading. Stiffness of the limb-socket body varied significantly between individuals, activities (walking and turning), and speeds. These results suggest that transverse limb loading can serve as a surrogate for residual-limb shear stress and that the setup of a prosthesis could be individually tailored using standard motion capture and inverse kinematic analyses.


Asunto(s)
Miembros Artificiales , Diseño de Prótesis , Rotación , Caminata , Adulto , Anciano , Amputados , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estrés Mecánico , Tibia , Caminata/fisiología
7.
J Biomech Eng ; 142(12)2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32469051

RESUMEN

Dynamic balance is controlled by lower-limb muscles and is more difficult to maintain during stair ascent compared to level walking. As a result, individuals with lower-limb amputations often have difficulty ascending stairs and are more susceptible to falls. The purpose of this study was to identify the biomechanical mechanisms used by individuals with and without amputation to control dynamic balance during stair ascent. Three-dimensional muscle-actuated forward dynamics simulations of amputee and nonamputee stair ascent were developed and contributions of individual muscles, the passive prosthesis, and gravity to the time rate of change of angular momentum were determined. The prosthesis replicated the role of nonamputee plantarflexors in the sagittal plane by contributing to forward angular momentum. The prosthesis largely replicated the role of nonamputee plantarflexors in the transverse plane but resulted in a greater change of angular momentum. In the frontal plane, the prosthesis and nonamputee plantarflexors contributed oppositely during the first half of stance while during the second half of stance, the prosthesis contributed to a much smaller extent. This resulted in altered contributions from the intact leg plantarflexors, vastii and hamstrings, and the intact and residual leg hip abductors. Therefore, prosthetic devices with altered contributions to frontal-plane angular momentum could improve balance control during amputee stair ascent and minimize necessary muscle compensations. In addition, targeted training could improve the force production magnitude and timing of muscles that regulate angular momentum to improve balance control.


Asunto(s)
Amputados , Caminata , Adulto , Miembros Artificiales , Fenómenos Biomecánicos , Humanos
8.
J Biomech Eng ; 140(1)2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28857115

RESUMEN

Stair ascent is an activity of daily living and necessary for maintaining independence in community environments. One challenge to improving an individual's ability to ascend stairs is a limited understanding of how lower-limb muscles work in synergy to perform stair ascent. Through dynamic coupling, muscles can perform multiple functions and require contributions from other muscles to perform a task successfully. The purpose of this study was to identify the functional roles of individual muscles during stair ascent and the mechanisms by which muscles work together to perform specific subtasks. A three-dimensional (3D) muscle-actuated simulation of stair ascent was generated to identify individual muscle contributions to the biomechanical subtasks of vertical propulsion, anteroposterior (AP) braking and propulsion, mediolateral control and leg swing. The vasti and plantarflexors were the primary contributors to vertical propulsion during the first and second halves of stance, respectively, while gluteus maximus and hamstrings were the primary contributors to forward propulsion during the first and second halves of stance, respectively. The anterior and posterior components of gluteus medius were the primary contributors to medial control, while vasti and hamstrings were the primary contributors to lateral control during the first and second halves of stance, respectively. To control leg swing, antagonistic muscles spanning the hip, knee, and ankle joints distributed power from the leg to the remaining body segments. These results compliment previous studies analyzing stair ascent and provide further rationale for developing targeted rehabilitation strategies to address patient-specific deficits in stair ascent.


Asunto(s)
Marcha , Modelos Biológicos , Músculos/fisiología , Fenómenos Biomecánicos , Humanos
9.
J Biomech Eng ; 140(3)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28787472

RESUMEN

Coronally uneven terrain, a common yet challenging feature encountered in daily ambulation, exposes individuals to an increased risk of falling. The foot-ankle complex may adapt to improve balance on uneven terrains, a recovery strategy which may be more challenging in patients with foot-ankle pathologies. A multisegment foot model (MSFM) was used to study the biomechanical adaptations of the foot and ankle joints during a step on a visually obscured, coronally uneven surface. Kinematic, kinetic and in-shoe pressure data were collected as ten participants walked on an instrumented walkway with a surface randomly positioned ±15 deg or 0 deg in the coronal plane. Coronally uneven surfaces altered hindfoot-tibia loading, with more conformation to the surface in early than late stance. Distinct loading changes occurred for the forefoot-hindfoot joint in early and late stance, despite smaller surface conformations. Hindfoot-tibia power at opposite heel contact (@OHC) was generated and increased on both uneven surfaces, whereas forefoot-hindfoot power was absorbed and remained consistent across surfaces. Push-off work increased for the hindfoot-tibia joint on the everted surface and for the forefoot-hindfoot joint on the inverted surface. Net work across joints was generated for both uneven surfaces, while absorbed on flat terrain. The partial decoupling and joint-specific biomechanical adaptations on uneven surfaces suggest that multi-articulating interventions such as prosthetic devices and arthroplasty may improve ambulation for mobility-impaired individuals on coronally uneven terrain.


Asunto(s)
Adaptación Fisiológica , Articulación del Tobillo/fisiología , Articulaciones del Pie/fisiología , Fenómenos Mecánicos , Adulto , Fenómenos Biomecánicos , Femenino , Ortesis del Pié , Humanos , Masculino , Zapatos , Propiedades de Superficie
10.
Arch Phys Med Rehabil ; 97(3): 493-6, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26525528

RESUMEN

OBJECTIVE: To test the hypothesis that participants with stroke will exhibit appropriate increase in muscle activation of the paretic leg when taking a long step with the nonparetic leg compared to during steady-state walking, with a consequent increase in biomechanical output and symmetry during the stance phase of the modified gait cycle. DESIGN: Single-session observational study. SETTING: Clinical research center in an outpatient hospital setting. PARTICIPANTS: Adults with chronic poststroke hemiparesis (N=15). INTERVENTIONS: Participants walked on an instrumented treadmill while kinetic, kinematic, and electromyogram data were recorded. Participants performed steady-state walking and a separate trial of the long-step adaptability task in which they were instructed to intermittently take a longer step with the nonparetic leg. MAIN OUTCOME MEASURES: Forward progression, propulsive force, and neuromuscular activation during walking. RESULTS: Participants performed the adaptability task successfully and demonstrated greater neuromuscular activation in appropriate paretic leg muscles, particularly increased activity in paretic plantarflexor muscles. Propulsion and forward progression by the paretic leg were also increased. CONCLUSIONS: These findings support the assertion that the nonparetic long-step task may be effective for use in poststroke locomotor rehabilitation to engage the paretic leg and promote recovery of walking.


Asunto(s)
Pierna/fisiopatología , Paresia/fisiopatología , Paresia/rehabilitación , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular/fisiopatología , Caminata/fisiología , Electromiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
11.
J Biomech Eng ; 138(6): 061004, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27018453

RESUMEN

A number of robotic exoskeletons are being developed to provide rehabilitation interventions for those with movement disabilities. We present a systematic framework that allows for virtual prototyping (i.e., design, control, and experimentation (i.e. design, control, and experimentation) of robotic exoskeletons. The framework merges computational musculoskeletal analyses with simulation-based design techniques which allows for exoskeleton design and control algorithm optimization. We introduce biomechanical, morphological, and controller measures to optimize the exoskeleton performance. A major advantage of the framework is that it provides a platform for carrying out hypothesis-driven virtual experiments to quantify device performance and rehabilitation progress. To illustrate the efficacy of the framework, we present a case study wherein the design and analysis of an index finger exoskeleton is carried out using the proposed framework.


Asunto(s)
Simulación por Computador , Dispositivo Exoesqueleto , Diseño de Equipo , Dedos/fisiología , Humanos , Fenómenos Mecánicos , Contracción Muscular , Fuerza Muscular , Interfaz Usuario-Computador
12.
J Biomech Eng ; 137(11): 114504, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26399629

RESUMEN

In this work, MacConaill's classification that the articular surface of the femoral head is better represented by ovoidal shapes rather than purely spherical shapes is computationally tested. To test MacConaill's classification, a surface fitting framework was developed to fit spheres, ellipsoids, superellipsoids, ovoids, and superovoids to computed tomography (CT) data of the femoral proximal epiphysis. The framework includes several image processing and computational geometry techniques, such as active contour segmentation and mesh smoothing, where implicit surface fitting is performed with genetic algorithms. By comparing the surface fitting error statistics, the results indicate that (super)ovoids fit femoral articular surfaces better than spherical or (super)ellipsoidal shapes.


Asunto(s)
Cabeza Femoral/anatomía & histología , Adulto , Algoritmos , Femenino , Cabeza Femoral/diagnóstico por imagen , Humanos , Imagenología Tridimensional , Masculino , Modelos Anatómicos , Propiedades de Superficie , Tomografía Computarizada por Rayos X , Adulto Joven
13.
J Biomech Eng ; 136(9): 091001, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24870600

RESUMEN

Selective laser sintering (SLS) is a well-suited additive manufacturing technique for generating subject-specific passive-dynamic ankle-foot orthoses (PD-AFOs). However, the mechanical properties of SLS PD-AFOs may differ from those of commonly prescribed carbon fiber (CF) PD-AFOs. Therefore, the goal of this study was to determine if biomechanical measures during gait differ between CF and stiffness-matched SLS PD-AFOs. Subject-specific SLS PD-AFOs were manufactured for ten subjects with unilateral lower-limb impairments. Minimal differences in gait performance occurred when subjects used the SLS versus CF PD-AFOs. These results support the use of SLS PD-AFOs to study the effects of altering design characteristics on gait performance.


Asunto(s)
Tobillo , Carbono , Ortesis del Pié , Rayos Láser , Caminata , Adulto , Fenómenos Biomecánicos , Fibra de Carbono , Diseño de Equipo , Femenino , Marcha , Humanos , Masculino
14.
J Biomech ; 162: 111897, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38103312

RESUMEN

Quasi-stiffness describes the intersegmental joint moment-angle relationship throughout the progression of a task. Previous work has explored sagittal-plane ankle quasi-stiffness and its application for the development of powered lower-limb assistive devices. However, frontal-plane quasi-stiffness remains largely unexplored but has important implications for the development of exoskeletons since clinical populations often walk with wider steps and rely on frontal-plane balance recovery strategies at the hip and ankle. This study aimed to characterize frontal-plane hip and ankle quasi-stiffness during walking and determine how step width affects quasi-stiffness in both the frontal and sagittal planes. Kinematic and kinetic data were collected and quasi-stiffness values computed for healthy young adults (n = 15) during treadmill walking across a range of step widths. We identified specific subphases of the gait cycle that exhibit linear and quadratic frontal-plane quasi-stiffness approximations for the hip and ankle, respectively. In addition, we found that at wider step widths, sagittal-plane ankle quasi-stiffness increased during early stance (∼12-35% gait cycle), sagittal-plane hip quasi-stiffness decreased in late stance (∼40-55% gait cycle) and frontal-plane hip quasi-stiffness decreased during terminal stance (∼48-65% gait cycle). These results provide a framework for further exploration of frontal-plane quasi-stiffness, lend insight into how quasi-stiffness may relate to balance control at various step widths, and motivate the development of stiffness-modulating assistive devices to improve balance related outcomes.


Asunto(s)
Marcha , Caminata , Adulto Joven , Humanos , Tobillo , Extremidad Inferior , Articulación del Tobillo , Fenómenos Biomecánicos
15.
Gait Posture ; 108: 313-319, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38199090

RESUMEN

BACKGROUND: Balance perturbation studies during walking have improved our understanding of balance control in various destabilizing conditions. However, it is unknown to what extent balance recovery strategies can be generalized across different types of mediolateral balance perturbations. RESEARCH QUESTION: Do similar mediolateral perturbations (foot placement versus surface translation) have similar effects on balance control and corresponding balance response strategies? METHODS: Kinetic and kinematic data were previously collected during two separate studies, each with 15 young, healthy participants walking on an instrumented treadmill. In both studies, medial and lateral balance perturbations were applied at 80% of the gait cycle either by a treadmill surface translation or a pneumatic force applied to the swing foot. Differences in balance control (frontal plane whole body angular momentum) and balance response strategies (hip abduction moment, ankle inversion moment, center of pressure excursion and frontal plane trunk moment) between perturbed and unperturbed gait cycles were evaluated using statistical parametric mapping. RESULTS: Balance disruptions after foot placement perturbations were larger and sustained longer compared to surface translations. Changes in joint moment responses were also larger for the foot placement perturbations compared to the surface translation perturbations. Lateral hip, ankle, and trunk strategies were used to maintain balance after medial foot placement perturbations, while a trunk strategy was primarily used after surface translations. SIGNIFICANCE: Surface and foot placement perturbations influence balance control and corresponding response strategies differently. These results can help inform the development of perturbation-based balance training interventions aimed at reducing fall risk in clinical populations.


Asunto(s)
Extremidad Inferior , Caminata , Humanos , Caminata/fisiología , Extremidad Inferior/fisiología , Pie/fisiología , Marcha/fisiología , Movimiento (Física) , Fenómenos Biomecánicos , Equilibrio Postural/fisiología
16.
Clin Biomech (Bristol, Avon) ; 116: 106268, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38795609

RESUMEN

BACKGROUND: Community ambulation involves complex walking adaptability tasks such as stepping over obstacles or taking long steps, which require adequate propulsion generation by the trailing leg. Individuals post-stroke often have an increased reliance on their trailing nonparetic leg and favor leading with their paretic leg, which can limit mobility. Ankle-foot-orthoses are prescribed to address common deficits post-stroke such as foot drop and ankle instability. However, it is not clear if walking with an ankle-foot-orthosis improves inter-limb propulsion symmetry during adaptability tasks. This study sought to examine this hypothesis. METHODS: Individuals post-stroke (n = 9) that were previously prescribed a custom fabricated plantarflexion-stop articulated ankle-foot-orthosis participated. Participants performed steady-state walking and adaptability tasks overground with and without their orthosis. The adaptability tasks included obstacle crossing and long-step tasks, leading with both their paretic and nonparetic leg. Inter-limb propulsion symmetry was calculated using trailing limb ground-reaction-forces. FINDINGS: During the obstacle crossing task, ankle-foot-orthosis use resulted in a significant improvement in inter-limb propulsion symmetry. The orthosis also improved ankle dorsiflexion during stance, reduced knee hyperextension, increased gastrocnemius muscle activity, and increased peak paretic leg ankle plantarflexor moment. In contrast, there were no differences in propulsion symmetry during steady-state walking and taking a long-step when using the orthosis. INTERPRETATION: Plantarflexion-stop articulated ankle-foot-orthoses can improve propulsion symmetry during obstacle crossing tasks in individuals post-stroke, promoting paretic leg use and reduced reliance on the nonparetic leg.


Asunto(s)
Ortesis del Pié , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Caminata , Humanos , Caminata/fisiología , Masculino , Femenino , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/complicaciones , Persona de Mediana Edad , Rehabilitación de Accidente Cerebrovascular/métodos , Anciano , Adaptación Fisiológica , Articulación del Tobillo/fisiopatología , Pie/fisiopatología , Fenómenos Biomecánicos , Tobillo/fisiopatología , Marcha/fisiología , Trastornos Neurológicos de la Marcha/fisiopatología , Trastornos Neurológicos de la Marcha/rehabilitación , Trastornos Neurológicos de la Marcha/etiología , Paresia/fisiopatología , Paresia/rehabilitación , Paresia/etiología
17.
Arch Phys Med Rehabil ; 94(5): 856-62, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23220082

RESUMEN

OBJECTIVES: To identify the clinical measures associated with improved walking speed after locomotor rehabilitation in individuals poststroke and how those who respond with clinically meaningful changes in walking speed differ from those with smaller speed increases. DESIGN: A single group pre-post intervention study. Participants were stratified on the basis of a walking speed change of greater than (responders) or less than (nonresponders) .16m/s. Paired sample t tests were run to assess changes in each group, and correlations were run between the change in each variable and change in walking speed. SETTING: Outpatient interdisciplinary rehabilitation research center. PARTICIPANTS: Hemiparetic subjects (N=27) (17 left hemiparesis; 19 men; age: 58.74±12.97y; 22.70±16.38mo poststroke). INTERVENTION: A 12-week locomotor intervention incorporating training on a treadmill with body weight support and manual trainers accompanied by training overground walking. MAIN OUTCOME MEASURES: Measures of motor control, balance, functional walking ability, and endurance were collected at pre- and postintervention assessments. RESULTS: Eighteen responders and 9 nonresponders differed by age (responders=63.6y, nonresponders=49.0y, P=.001) and the lower extremity Fugl-Meyer Assessment score (responders=24.7, nonresponders=19.9, P=.003). Responders demonstrated an average improvement of .27m/s in walking speed as well as significant gains in all variables except daily step activity and paretic step ratio. Conversely, nonresponders demonstrated statistically significant improvements only in walking speed and endurance. However, the walking speed increase of .10m/s was not clinically meaningful. Change in walking speed was negatively correlated with changes in motor control in the nonresponder group, implying that walking speed gains may have been accomplished via compensatory mechanisms. CONCLUSIONS: This study is a step toward discerning the underlying factors contributing to improved walking performance.


Asunto(s)
Trastornos Neurológicos de la Marcha/rehabilitación , Rehabilitación de Accidente Cerebrovascular , Caminata/fisiología , Factores de Edad , Anciano , Enfermedad Crónica , Femenino , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/fisiopatología , Humanos , Extremidad Inferior/fisiopatología , Masculino , Persona de Mediana Edad , Resistencia Física , Equilibrio Postural , Estadísticas no Paramétricas , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/fisiopatología , Análisis y Desempeño de Tareas , Factores de Tiempo
18.
J Biomech ; 157: 111731, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37494856

RESUMEN

Individuals with neuromuscular deficits often walk with wider step widths compared to healthy adults. Wider steps have been linked to a higher destabilizing frontal-plane external moment and greater range of frontal-plane whole-body angular momentum (HR), which is an indicator of decreased balance control. The purpose of this study was to experimentally determine 1) how step width alters balance control during steady-state walking, and 2) if step width changes the balance response strategies following mediolateral surface perturbations in healthy adults. Fifteen healthy young adults (7 male, age: 25 ± 4 years) walked on an instrumented treadmill at narrow, self-selected, wide and extra-wide step widths. During perturbed trials, the treadmill provided random mediolateral surface translations to each foot midway through single-leg-stance. Muscle electromyography, biomechanical measures (HR, frontal-plane external moment and joint moments) and deviations (differences in these measures between the perturbed and unperturbed walking trials) were compared across step widths. During steady state walking, wider steps were associated with decreased balance control. Increasing step widths were also associated with increased gluteus medius activity and reduced hip abduction and ankle inversion moments, which suggests healthy subjects rely more on a lateral ankle strategy to maintain balance at increasing step widths. There was no change in the plantarflexion moment. During perturbed walking, lateral, but not medial, surface translations adversely affected balance control. Further, wider steps did not change the balance response strategies following the perturbations, which suggests healthy individuals have the capacity to respond similarly to the perturbations at different step widths.


Asunto(s)
Marcha , Equilibrio Postural , Adulto , Humanos , Masculino , Adulto Joven , Fenómenos Biomecánicos , Nalgas , Pie/fisiología , Marcha/fisiología , Equilibrio Postural/fisiología , Caminata/fisiología , Femenino
19.
Gait Posture ; 103: 37-43, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37084627

RESUMEN

BACKGROUND: Clinical populations often walk with altered foot placement, which can adversely affect balance control. However, it is unknown how balance control during walking is influenced when combining a cognitive load with altered foot placement. RESEARCH QUESTION: Is balance control during walking adversely affected by the combination of a more complex motor task, such as walking with altered foot placements, with a cognitive load? METHODS: Fifteen young healthy adults walked on a treadmill with and without a spelling cognitive load during normal walking, with step width targets (self-selected width, narrow, wide and extra wide), or with step length targets (self-selected length, short and long). RESULTS: Cognitive performance, measured by correct spelling response rate, decreased from self-selected (2.407 ± 0.6 letters/s) to the extra wide width (2.011 ± 0.5 letters/s). The addition of the cognitive load caused a decrease in frontal plane balance control across all step lengths (15% change) and at the wider step widths (16% change), but only caused a slight decrease in the sagittal plane for the short step length (6.8% change). SIGNIFICANCE: These results suggest that when combining a cognitive load with walking at non-self-selected widths, a threshold exists at wider steps where attentional resources become insufficient and balance control and cognitive performance decrease. Because decreased balance control increases the risk of falling, these results have implications for clinical populations who often walk with wider steps. Furthermore, the lack of changes to sagittal plane balance during altered step length dual-tasks further supports that frontal plane balance requires more active control.


Asunto(s)
Marcha , Caminata , Humanos , Adulto Joven , Marcha/fisiología , Caminata/fisiología , Pie/fisiología , Prueba de Esfuerzo , Cognición , Equilibrio Postural/fisiología , Fenómenos Biomecánicos
20.
J Biomech ; 155: 111622, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37247517

RESUMEN

Coronally uneven surfaces are prevalent in natural and man-made terrain, such as holes or bumps in the ground, curbs, sidewalks, and driveways. These surfaces can be challenging to navigate, especially for individuals with lower limb amputations. This study examined the biomechanical response of individuals with unilateral transtibial amputation (TTA) taking a step on a coronally uneven surface while wearing their clinically prescribed prosthesis, compared to individuals without mobility impairments (controls). An instrumented walkway was used with the middle force plate positioned either flush or rotated ± 15˚ in the coronal plane and concealed (blinded). TTAs used greater hip abduction compared to controls across all conditions, but especially during blinded inversion. The recovery step width of TTAs was wider after blinded eversion and narrower after blinded inversion, but unchanged for controls. These results suggest TTAs may have decreased balance control on unexpected, uneven surfaces. Additionally, TTAs generated less positive prosthetic ankle joint work during blinded inversion and eversion, and less negative coronal hip joint work during blinded inversion compared to controls. These biomechanical responses could lead to increased energy expenditure on uneven terrain. Surface condition had no effect on the vertical center of mass for either group of participants. Finally, the TTAs and the control group generated similar vertical GRF impulses, suggesting the TTAs had sufficient body support despite differences in surface conditions. These results are important to consider for future prosthetic foot designs and rehabilitation strategies.


Asunto(s)
Amputados , Miembros Artificiales , Humanos , Fenómenos Biomecánicos , Amputación Quirúrgica , Pie/fisiología , Tobillo , Marcha/fisiología , Caminata/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA