Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurochem Res ; 49(3): 732-743, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38063948

RESUMEN

Astrocytes have key regulatory roles in central nervous system (CNS), integrating metabolic, inflammatory and synaptic responses. In this regard, type I interferon (IFN) receptor signaling in astrocytes can regulate synaptic plasticity. Simvastatin is a cholesterol-lowering drug that has shown anti-inflammatory properties, but its effects on astrocytes, a main source of cholesterol for neurons, remain to be elucidated. Herein, we investigated the effects of simvastatin in inflammatory and functional parameters of primary cortical and hypothalamic astrocyte cultures obtained from IFNα/ß receptor knockout (IFNα/ßR-/-) mice. Overall, simvastatin decreased extracellular levels of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß), which were related to a downregulation in gene expression in hypothalamic, but not in cortical astrocytes. Moreover, there was an increase in anti-inflammatory interleukin-10 (IL-10) in both structures. Effects of simvastatin in inflammatory signaling also involved a downregulation of cyclooxygenase 2 (COX-2) gene expression as well as an upregulation of nuclear factor κB subunit p65 (NFκB p65). The expression of cytoprotective genes sirtuin 1 (SIRT1) and nuclear factor erythroid derived 2 like 2 (Nrf2) was also increased by simvastatin. In addition, simvastatin increased glutamine synthetase (GS) activity and glutathione (GSH) levels only in cortical astrocytes. Our findings provide evidence that astrocytes from different regions are important cellular targets of simvastatin in the CNS, even in the absence of IFNα/ßR, which was showed by the modulation of cytokine production and release, as well as the expression of cytoprotective genes and functional parameters.


Asunto(s)
Astrocitos , Simvastatina , Ratones , Animales , Astrocitos/metabolismo , Simvastatina/farmacología , Ratones Noqueados , Factor de Necrosis Tumoral alfa/metabolismo , Interferón-alfa/metabolismo , Interferón-alfa/farmacología , Antiinflamatorios/farmacología , Colesterol/metabolismo , Células Cultivadas
2.
Mol Cell Neurosci ; 126: 103864, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37268283

RESUMEN

Oxygen deprivation is one of the main causes of morbidity and mortality in newborns, occurring with a higher prevalence in preterm infants, reaching 20 % to 50 % mortality in newborns in the perinatal period. When they survive, 25 % exhibit neuropsychological pathologies, such as learning difficulties, epilepsy, and cerebral palsy. White matter injury is one of the main features found in oxygen deprivation injury, which can lead to long-term functional impairments, including cognitive delay and motor deficits. The myelin sheath accounts for much of the white matter in the brain by surrounding axons and enabling the efficient conduction of action potentials. Mature oligodendrocytes, which synthesize and maintain myelination, also comprise a significant proportion of the brain's white matter. In recent years, oligodendrocytes and the myelination process have become potential therapeutic targets to minimize the effects of oxygen deprivation on the central nervous system. Moreover, evidence indicate that neuroinflammation and apoptotic pathways activated during oxygen deprivation may be influenced by sexual dimorphism. To summarize the most recent research about the impact of sexual dimorphism on the neuroinflammatory state and white matter injury after oxygen deprivation, this review presents an overview of the oligodendrocyte lineage development and myelination, the impact of oxygen deprivation and neuroinflammation on oligodendrocytes in neurodevelopmental disorders, and recent reports about sexual dimorphism regarding the neuroinflammation and white matter injury after neonatal oxygen deprivation.


Asunto(s)
Lesiones Encefálicas , Sustancia Blanca , Recién Nacido , Humanos , Embarazo , Femenino , Oxígeno/metabolismo , Enfermedades Neuroinflamatorias , Recien Nacido Prematuro , Vaina de Mielina/metabolismo , Encéfalo/metabolismo , Oligodendroglía/metabolismo , Sustancia Blanca/metabolismo , Lesiones Encefálicas/metabolismo
3.
J Neurovirol ; 29(5): 577-587, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37501054

RESUMEN

Patients affected by COVID-19 present mostly with respiratory symptoms but acute neurological symptoms are also commonly observed. Furthermore, a considerable number of individuals develop persistent and often remitting symptoms months after infection, characterizing the condition called long-COVID. Since the pathophysiology of acute and persistent neurological manifestations is not fully established, we evaluated the expression of different genes in hippocampal slices of aged rats exposed to the serum of a post-COVID (sPC) individual and to the serum of patients infected by SARS-CoV-2 [Zeta (sZeta) and Gamma (sGamma) variants]. The expression of proteins related to inflammatory process, redox homeostasis, mitochondrial quality control and glial reactivity was determined. Our data show that the exposure to sPC, sZeta and sGamma differentially altered the mRNA levels of most inflammatory proteins and reduced those of antioxidant response markers in rat hippocampus. Furthermore, a decrease in the expression of mitochondrial biogenesis genes was induced by all serum samples, whereas a reduction in mitochondrial dynamics was only caused by sPC. Regarding the glial reactivity, S100B expression was modified by sPC and sZeta. These findings demonstrate that changes in the inflammatory response and a reduction of mitochondrial biogenesis and dynamics may contribute to the neurological damage observed in COVID-19 patients.


Asunto(s)
COVID-19 , Humanos , Animales , Ratas , COVID-19/genética , Enfermedades Neuroinflamatorias , Síndrome Post Agudo de COVID-19 , SARS-CoV-2 , Homeostasis , Hipocampo
4.
Hippocampus ; 32(6): 413-418, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35347795

RESUMEN

Transient global ischemia is a leading cause of learning and memory dysfunction and induces a pattern of delayed neuronal death in the CA1 subfield of the hippocampus by down-regulating GluR2 mRNA AMPA receptors in this cerebral area. This study sought to investigate the neuroprotective effect of coumestrol against spatial memory impairment induced by global ischemia that leads to neural death by reducing the GluR2 receptors content in the hippocampal CA1 area. Our studies demonstrated that coumestrol administration prevented spatial memory deficits in mice. These findings suggest a cognitive enhancement role of coumestrol against cognitive impairment in ischemic events.


Asunto(s)
Isquemia Encefálica , Ataque Isquémico Transitorio , Fármacos Neuroprotectores , Animales , Isquemia Encefálica/complicaciones , Isquemia Encefálica/tratamiento farmacológico , Cumestrol , Hipocampo/metabolismo , Isquemia , Ataque Isquémico Transitorio/complicaciones , Ataque Isquémico Transitorio/tratamiento farmacológico , Ataque Isquémico Transitorio/genética , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Ratones , Fármacos Neuroprotectores/farmacología , Receptores AMPA/metabolismo , Aprendizaje Espacial
5.
Metab Brain Dis ; 37(7): 2315-2329, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35778625

RESUMEN

Therapeutic hypothermia (TH) is the standard treatment for neonatal hypoxia-ischemia (HI) with a time window limited up to 6 h post injury. However, influence of sexual dimorphism in the therapeutic window for TH has not yet been elucidated in animal models of HI. Therefore, the aim of this study was to investigate the most effective time window to start TH in male and female rats submitted to neonatal HI. Wistar rats (P7) were divided into the following groups: NAÏVE and SHAM (control groups), HI (submitted to HI) and TH (submitted to HI and TH; 32ºC for 5 h). TH was started at 2 h (TH-2 h group), 4 h (TH-4 h group), or 6 h (TH-6 h group) after HI. At P14, animals were subjected to behavioural tests, volume of lesion and reactive astrogliosis assessments. Male and female rats from the TH-2 h group showed reduction in the latency of behavioral tests, and decrease in volume of lesion and intensity of GFAP immunofluorescence. TH-2 h females also showed reduction of degenerative cells and morphological changes in astrocytes. Interestingly, females from the TH-6 h group showed an increase in volume of lesion and in number of degenerative hippocampal cells, associated with worse behavioral performance. Together, these results indicate that TH neuroprotection is time- and sex-dependent. Moreover, TH started later (6 h) can worsen volume of brain lesion in females. These data indicate the need to develop specific therapeutic protocols for each sex and reinforce the importance of early onset of the hypothermic treatment.


Asunto(s)
Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Animales , Masculino , Femenino , Ratas , Hipoxia-Isquemia Encefálica/terapia , Hipoxia-Isquemia Encefálica/patología , Gliosis/terapia , Gliosis/patología , Ratas Wistar , Animales Recién Nacidos , Encéfalo , Isquemia/patología , Isquemia/terapia , Modelos Animales de Enfermedad
6.
J Neurochem ; 157(6): 1911-1929, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33098090

RESUMEN

Prenatal and early postnatal periods are important for brain development and neural function. Neonatal insults such as hypoxia-ischemia (HI) causes prolonged neural and metabolic dysregulation, affecting central nervous system maturation. There is evidence that brain hypometabolism could increase the risk of adult-onset neurodegenerative diseases. However, the impact of non-pharmacologic strategies to attenuate HI-induced brain glucose dysfunction is still underexplored. This study investigated the long-term effects of early environmental enrichment in metabolic, cell, and functional responses after neonatal HI. Thereby, male Wistar rats were divided according to surgical procedure, sham, and HI (performed at postnatal day 3), and the allocation to standard (SC) or enriched condition (EC) during gestation and lactation periods. In-vivo cerebral metabolism was assessed by means of [18 F]-FDG micro-positron emission tomography, and cognitive, biochemical, and histological analyses were performed in adulthood. Our findings reveal that HI causes a reduction in glucose metabolism and glucose transporter levels as well as hyposynchronicity in metabolic brain networks. However, EC during prenatal or early postnatal period attenuated these metabolic disturbances. A positive correlation was observed between [18 F]-FDG values and volume ratios in adulthood, indicating that preserved tissue by EC is metabolically active. EC promotes better cognitive scores, as well as down-regulation of amyloid precursor protein in the parietal cortex and hippocampus of HI animals. Furthermore, growth-associated protein 43 was up-regulated in the cortex of EC animals. Altogether, results presented support that EC during gestation and lactation period can reduce HI-induced impairments that may contribute to functional decline and progressive late neurodegeneration.


Asunto(s)
Encéfalo/metabolismo , Ambiente , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/prevención & control , Plasticidad Neuronal/fisiología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Animales Recién Nacidos , Femenino , Hipoxia-Isquemia Encefálica/psicología , Lactancia/metabolismo , Lactancia/psicología , Masculino , Aprendizaje por Laberinto/fisiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/prevención & control , Enfermedades Neurodegenerativas/psicología , Tomografía de Emisión de Positrones/métodos , Embarazo , Efectos Tardíos de la Exposición Prenatal/psicología , Ratas , Ratas Wistar
7.
Neurobiol Learn Mem ; 171: 107207, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32147586

RESUMEN

BACKGROUND AND PURPOSE: Hypoxia and cerebral ischemia (HI) events are capable of triggering important changes in brain metabolism, including glucose metabolism abnormalities, which may be related to the severity of the insult. Using positron emission microtomography (microPET) with [18F]fluorodeoxyglucose (18F-FDG), this study proposes to assess abnormalities of brain glucose metabolism in adult rats previously submitted to the neonatal HI model. We hypothesize that cerebral metabolic outcomes will be associated with cognitive deficits and magnitude of brain injury. METHODS: Seven-day-old rats were subjected to an HI model, induced by permanent occlusion of the right common carotid artery and systemic hypoxia. 18F-FDG-microPET was used to assess regional and whole brain glucose metabolism in rats at 60 postnatal days (PND 60). An interregional cross-correlation matrix was utilized to construct metabolic brain networks (MBN). Rats were also subjected to the Morris Water Maze (MWM) to evaluate spatial memory and their brains were processed for volumetric evaluation. RESULTS: Brain glucose metabolism changes were observed in adult rats after neonatal HI insult, limited to the right brain hemisphere. However, not all HI animals exhibited significant cerebral hypometabolism. Hippocampal glucose metabolism was used to stratify HI animals into HI hypometabolic (HI-h) and HI non-hypometabolic (HI non-h) groups. The HI-h group had drastic MBN disturbance, cognitive deficit, and brain tissue loss, concomitantly. Conversely, HI non-h rats had normal brain glucose metabolism and brain tissue preserved, but also presented MBN changes and spatial memory impairment. Furthermore, data showed that brain glucose metabolism correlated with cognitive deficits and brain volume outcomes. CONCLUSIONS: Our findings demonstrated that long-term changes in MBN drive memory impairments in adult rats subjected to neonatal hypoxic ischemia, using in vivo imaging microPET-FDG. The MBN analyses identified glucose metabolism abnormalities in HI non-h animals, which were not detected by conventional 18F-FDG standardized uptake value (SUVr) measurements. These animals exhibited a metabolic brain signature that may explain the cognitive deficit even with no identifiable brain damage.


Asunto(s)
Encéfalo/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Trastornos de la Memoria/metabolismo , Red Nerviosa/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Modelos Animales de Enfermedad , Glucosa/metabolismo , Hipoxia-Isquemia Encefálica/complicaciones , Hipoxia-Isquemia Encefálica/diagnóstico por imagen , Masculino , Trastornos de la Memoria/diagnóstico por imagen , Trastornos de la Memoria/etiología , Red Nerviosa/diagnóstico por imagen , Tomografía de Emisión de Positrones , Ratas , Ratas Wistar
8.
Cell Mol Neurobiol ; 40(8): 1417-1428, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32170571

RESUMEN

Neonatal hypoxia-ischemia (HI) is the leading cause of mortality and morbidity in newborns, occurring in approximately 2% of live births. Neuroprotective actions of progesterone (PROG) have already been described in animal models of brain lesions. However, PROG actions on neonates are still controversial. Here, we treated male Wistar rats exposed to HI with PROG. Five experimental groups were defined (n = 6/group) according to the scheme of PROG administration (10 mg/kg): SHAM (animals submitted to a fictitious surgery, without ischemia induction, and maintained under normoxia), HI (animals undergoing HI), BEFORE (animals undergoing HI and receiving PROG immediately before HI), AFTER (animals undergoing HI and receiving PROG at 6 and 24 h after HI) and BEFORE/AFTER (animals undergoing HI and receiving PROG immediately before and 6 and 24 h after HI). At P14 (7 days following HI), the volumes of lesion of the cerebral hemisphere and the hippocampus ipsilateral to the cerebral ischemia were evaluated, along with p-Akt, cleaved caspase-3 and GFAP expression in the hippocampus. PROG reduces the loss of brain tissue caused by HI. Moreover, when administered after HI, PROG was able to increase p-Akt expression and reduce both cleaved caspase-3 and GFAP expression in the hippocampus. In summary, it was possible to observe a neuroprotective action of PROG on the brain of neonatal animals exposed to experimental HI. This is the first study suggesting PROG-dependent Akt activation is able to regulate negatively cleaved caspase-3 and GFAP expression protecting neonatal hypoxic-ischemic brain tissue from apoptosis and reactive gliosis.


Asunto(s)
Encéfalo/efectos de los fármacos , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Isquemia/metabolismo , Fármacos Neuroprotectores/farmacología , Progesterona/farmacología , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Isquemia/tratamiento farmacológico , Masculino , Ratas Wistar
9.
Neurochem Res ; 43(12): 2268-2276, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30255215

RESUMEN

Neonatal hypoxia-ischemia (HI) is associated to cognitive and motor impairments and until the moment there is no proven treatment. The underlying neuroprotective mechanisms of stem cells are partially understood and include decrease in excitotoxicity, apoptosis and inflammation suppression. This study was conducted in order to test the effects of intracardiac transplantation of human dental pulp stem cells (hDPSCs) for treating HI damage. Seven-day-old Wistar rats were divided into four groups: sham-saline, sham-hDPSCs, HI-saline, and HI-hDPSCs. Motor and cognitive tasks were performed from postnatal day 30. HI-induced cognitive deficits in the novel-object recognition test and in spatial reference memory impairment which were prevented by hDPSCs. No motor impairments were observed in HI animals. Immunofluorescence analysis showed human-positive nuclei in hDPSC-treated animals closely associated with anti-GFAP staining in the lesion scar tissue, suggesting that these cells were able to migrate to the injury site and could be providing support to CNS cells. Our study evidence novel evidence that hDPSC can contribute to the recovery following hypoxia-ischemia and highlight the need of further investigation in order to better understand the exact mechanisms underlying its neuroprotective effects.


Asunto(s)
Disfunción Cognitiva/prevención & control , Pulpa Dental/trasplante , Hipoxia-Isquemia Encefálica/terapia , Trasplante de Células Madre/métodos , Animales , Animales Recién Nacidos , Células Cultivadas , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Pulpa Dental/citología , Pulpa Dental/fisiología , Femenino , Ventrículos Cardíacos , Humanos , Hipoxia-Isquemia Encefálica/complicaciones , Hipoxia-Isquemia Encefálica/patología , Inyecciones , Masculino , Aprendizaje por Laberinto/fisiología , Embarazo , Distribución Aleatoria , Ratas , Ratas Wistar , Células Madre/fisiología
10.
J Perinat Med ; 46(4): 433-439, 2018 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-28841577

RESUMEN

Neonatal hypoxia ischemia (HI) is the main cause of mortality and morbidity in newborns. The mechanisms involved in its progression start immediately and persist for several days. Oxidative stress and inflammation are determinant factors of the severity of the final lesion. The spleen plays a major part in the inflammatory response to HI. This study assessed the temporal progression of HI-induced alterations in oxidative stress parameters in the hippocampus, the most affected brain structure, and in the spleen. HI was induced in Wistar rat pups in post-natal day 7. Production of reactive oxygen species (ROS), and the activity of the anti oxidant enzyme superoxide dismutase and catalase were assessed 24 h, 96 h and 38 days post-HI. Interestingly, both structures showed a similar pattern, with few alterations in the production of ROS species up to 96 h often combined with an increased activity of the anti oxidant enzymes. However, 38 days after the injury, ROS were at the highest in both structures, coupled with a decrease in the activity of the enzymes. Altogether, present results suggest that HI causes long lasting alterations in the hippocampus as well as in the spleen, suggesting a possible target for delayed treatments for HI.


Asunto(s)
Hipocampo/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Estrés Oxidativo , Bazo/metabolismo , Animales , Animales Recién Nacidos , Catalasa/metabolismo , Modelos Animales de Enfermedad , Femenino , Hipocampo/patología , Hipoxia-Isquemia Encefálica/patología , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Bazo/patología , Superóxido Dismutasa/metabolismo
12.
J Neurosci Res ; 95(1-2): 409-421, 2017 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-27870406

RESUMEN

Neonatal hypoxia-ischemia (HI) is an important cause of neurological deficits in humans, and the Levine-Rice model of experimental HI in the rat mimics the human brain lesion and the following sensory motor deficits and cognitive disabilities. With the growing evidence that sex influences all levels of brain functions, this Mini-Review highlights studies in which sex was a controlled variable and that provided evidence of sexual dimorphism in behavioral outcome, extension of brain damage, mechanisms of lesion, and treatment efficacy in the rat neonatal HI model. It was shown that 1) females have greater memory deficits; 2) cell death is dependent mainly on caspase activation in females; 3) males are more susceptible to oxidative stress; and 4) treatments acting on distinct cell death pathways afford sex-dependent neuroprotection. These tentative conclusions, along with growing evidence from other fields of neurobiology, support the need for scientists to design their experiments considering sex as an important variable; otherwise, important knowledge will continue to be missed. It is conceivable that sex can influence the development of efficacious therapeutic tools to treat neonates suffering from brain HI. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/patología , Discapacidades del Desarrollo/etiología , Hipoxia-Isquemia Encefálica/complicaciones , Caracteres Sexuales , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Femenino , Hipoxia-Isquemia Encefálica/patología , Hipoxia-Isquemia Encefálica/fisiopatología , Masculino , Ratas
13.
Neurochem Res ; 42(5): 1422-1429, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28210957

RESUMEN

Regular physical activity has shown to improve the quality of life and to prevent age-related memory deficits. Memory processing requires proper regulation of several enzymes such as sodium-potassium adenosine triphosphatase (Na+, K+-ATPase) and acetylcholinesterase (AChE), which have a pivotal role in neuronal transmission. The present study investigated the effects of a treadmill running protocol in young (3 months), mature (6 months) and aged (22 months) Wistar rats, on: (a) cognitive function, as assessed in the Water maze spatial tasks; (b) Na+, K+-ATPase and AChE activities in the hippocampus following cognitive training alone or treadmill running combined with cognitive training. Animals of all ages were assigned to naïve (with no behavioral or exercise training), sedentary (non-exercised, with cognitive training) and exercised (20 min of daily running sessions, 3 times per week for 4 weeks and with cognitive training) groups. Cognition was assessed by reference and working memory tasks run in the Morris Water maze; 24 h after last session of behavioral testing, hippocampi were collected for biochemical analysis. Results demonstrated that: (a) a moderate treadmill running exercise prevented spatial learning and memory deficits in aged rats; (b) training in the Water maze increased both Na+, K+-ATPase and AChE activities in the hippocampus of mature and aged rats; (c) aged exercised rats displayed an even further increase of Na+, K+-ATPase activity in the hippocampus, (d) enzyme activity correlated with memory performance in aged rats. It is suggested that exercise prevents spatial memory deficits in aged rats probably through the activation of Na+, K+-ATPase in the hippocampus.


Asunto(s)
Envejecimiento/metabolismo , Hipocampo/enzimología , Trastornos de la Memoria/enzimología , Condicionamiento Físico Animal/fisiología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Memoria Espacial/fisiología , Animales , Activación Enzimática/fisiología , Prueba de Esfuerzo/métodos , Prueba de Esfuerzo/psicología , Masculino , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/prevención & control , Condicionamiento Físico Animal/métodos , Condicionamiento Físico Animal/psicología , Distribución Aleatoria , Ratas , Ratas Wistar
14.
Behav Brain Res ; 465: 114941, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38447760

RESUMEN

BACKGROUND: Chronic cerebral hypoperfusion in vascular dementia leads to memory and motor deficits; Physical exercise improves these aspects and promotes neuroprotection. Sexual dimorphism may significantly influence both ischemic and exercise outcomes. AIMS: The aim of this study was to investigate the effects of 2VO (Two-Vessel occlusion) and the acrobatic training on motor function, functional performance, and tissue loss in male and female rats. METHODS: Male and female rats were randomly divided into 4 groups: sham acrobatic, sham sedentary, 2VO acrobatic and 2VO sedentary. After 45 days of 2VO surgery, the animals received 4 weeks of acrobatic training. At the end, open field, beam balance and horizontal ladder tests were performed. Brain samples were taken for histological and morphological evaluation. RESULTS: Spontaneous motor activity in the open field was not affected by 2VO, on the other hand, an impairment in forelimb placement was observed after 2VO and acrobatic training prevented errors and improved hindlimb placement. Neuronal loss was found in the motor cortex and striatum after 2VO, especially in females, which was prevented by acrobatic training. CONCLUSION: Mild motor damage was found in animals after 2VO when refined movement was evaluated, probably associated to neuronal death in the motor cortex and striatum. The acrobatic exercise showed a neuroprotective effect, promoting neuronal survival and attenuating the motor deficit.


Asunto(s)
Isquemia Encefálica , Demencia Vascular , Corteza Motora , Ratas , Animales , Masculino , Femenino , Isquemia Encefálica/patología , Encéfalo , Isquemia , Modelos Animales de Enfermedad , Aprendizaje por Laberinto
15.
Front Rehabil Sci ; 5: 1375561, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38939055

RESUMEN

Background: Chronic cerebral hypoperfusion (CCH) leads to memory and learning impairments associated with degeneration and gliosis in the hippocampus. Treatment with physical exercise carries different therapeutic benefits for each sex. We investigated the effects of acrobatic training on astrocyte remodeling in the CA1 and CA3 subfields of the hippocampus and spatial memory impairment in male and female rats at different stages of the two-vessel occlusion (2VO) model. Methods: Wistar rats were randomly allocated into four groups of males and females: 2VO acrobatic, 2VO sedentary, sham acrobatic, and sham sedentary. The acrobatic training was performed for 4 weeks prior to the 2VO procedure. Brain samples were collected for morphological and biochemical analysis at 3 and 7 days after 2VO. The dorsal hippocampi were removed and prepared for Western blot quantification of Akt, p-Akt, COX IV, cleaved caspase-3, PARP, and GFAP. GFAP immunofluorescence was performed on slices of the hippocampus to count astrocytes and apply the Sholl's circle technique. The Morris water maze was run after 45 days of 2VO. Results: Acutely, the trained female rats showed increased PARP expression, and the 2VO-trained rats of both sexes presented increased GFAP levels in Western blot. Training, mainly in males, induced an increase in the number of astrocytes in the CA1 subfield. The 2VO rats presented branched astrocytes, while acrobatic training prevented branching. However, the 2VO-induced spatial memory impairment was partially prevented by the acrobatic training. Conclusion: Acrobatic training restricted the astrocytic remodeling caused by 2VO in the CA1 and CA3 subfields of the hippocampus. The improvement in spatial memory was associated with more organized glial scarring in the trained rats and better cell viability observed in females.

16.
Neurobiol Learn Mem ; 101: 94-102, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23357282

RESUMEN

It has been described that exercise can modulate both inflammatory response and epigenetic modifications, although the effect of exercise on these parameters during the normal brain aging process yet remains poorly understood. Here, we investigated the effect of aging and treadmill exercise on inflammatory and epigenetic parameters specifically pro and anti-inflammatory cytokines levels, activation of NF-kB and histone H4 acetylation levels in hippocampus from Wistar rats. Additionally, we evaluated aversive memory through inhibitory avoidance task. Rats of 3 and 20 months of age were assigned to non-exercised (sedentary) and exercised (running daily for 20 min for 2 weeks) groups. The effect of daily forced exercise in the treadmill was assessed. The levels of inflammatory and epigenetic parameters were determined 1h, 18 h, 3 days or 7 days after the last training session of exercise. It was observed an age-related decline on aversive memory, as well as aged rats showed increased hippocampal levels of inflammatory markers, such as TNFα, IL1-ß and NF-kB and decreased IL-4 levels, an anti-inflammatory cytokine. Moreover, lower levels of global histone H4 acetylation were also observed in hippocampi from aged rats. Interestingly, there was a significant correlation between the biochemical markers and the inhibitory avoidance test performance. The forced exercise protocol ameliorated aging-related memory decline, decreased pro-inflammatory markers and increased histone H4 acetylation levels in hippocampi 20-months-old rats, while increased acutely IL-4 levels in hippocampi from young adult rats. Together, these results suggest that an imbalance of inflammatory markers might be involved to the aging-related aversive memory impairment. Additionally, our exercise protocol may reverse aging-related memory decline through improving cytokine profile.


Asunto(s)
Envejecimiento/metabolismo , Hipocampo/metabolismo , Mediadores de Inflamación/metabolismo , Memoria/fisiología , Condicionamiento Físico Animal/fisiología , Acetilación , Envejecimiento/fisiología , Animales , Reacción de Prevención/fisiología , Epigénesis Genética , Histonas/metabolismo , Interleucina-1beta/metabolismo , Interleucina-4/metabolismo , Masculino , FN-kappa B/metabolismo , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa/metabolismo
17.
Neurotox Res ; 41(2): 119-140, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36580261

RESUMEN

L-2-Hydroxyglutaric aciduria (L-2-HGA) is an inherited neurometabolic disorder caused by deficient activity of L-2-hydroxyglutarate dehydrogenase. L-2-Hydroxyglutaric acid (L-2-HG) accumulation in the brain and biological fluids is the biochemical hallmark of this disease. Patients present exclusively neurological symptoms and brain abnormalities, particularly in the cerebral cortex, basal ganglia, and cerebellum. Since the pathogenesis of this disorder is still poorly established, we investigated the short-lived effects of an intracerebroventricular injection of L-2-HG to neonatal rats on redox homeostasis in the cerebellum, which is mostly affected in this disorder. We also determined immunohistochemical landmarks of neuronal viability (NeuN), astrogliosis (S100B and GFAP), microglia activation (Iba1), and myelination (MBP and CNPase) in the cerebral cortex and striatum following L-2-HG administration. Finally, the neuromotor development and cognitive abilities were examined. L-2-HG elicited oxidative stress in the cerebellum 6 h after its injection, which was verified by increased reactive oxygen species production, lipid oxidative damage, and altered antioxidant defenses (decreased concentrations of reduced glutathione and increased glutathione peroxidase and superoxide dismutase activities). L-2-HG also decreased the content of NeuN, MBP, and CNPase, and increased S100B, GFAP, and Iba1 in the cerebral cortex and striatum at postnatal days 15 and 75, implying long-standing neuronal loss, demyelination, astrocyte reactivity, and increased inflammatory response, respectively. Finally, L-2-HG administration caused a delay in neuromotor development and a deficit of cognition in adult animals. Importantly, the antioxidant melatonin prevented L-2-HG-induced deleterious neurochemical, immunohistochemical, and behavioral effects, indicating that oxidative stress may be central to the pathogenesis of brain damage in L-2-HGA.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Ratas , Animales , Antioxidantes/farmacología , Animales Recién Nacidos
18.
In Vitro Cell Dev Biol Anim ; 59(5): 366-380, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37353697

RESUMEN

Astrocytes play essential roles in the central nervous system (CNS), such as the regulation of glutamate metabolism, antioxidant defenses, and inflammatory/immune responses. Moreover, hypothalamic astrocytes seem to be crucial in the modulation of inflammatory processes, including those related to type I interferon signaling. In this regard, the polyphenol resveratrol has emerged as an important glioprotective molecule to regulate astrocyte functions. Therefore, this study aimed to investigate the immunomodulatory and protective effects of resveratrol in hypothalamic astrocyte cultures obtained from mouse depleted of type I interferon receptors (INF-α/ß-/-), a condition that can impair immune and inflammatory functions. Resveratrol upregulated glutamate transporter and glutamine synthetase gene expression, as well as modulated the release of wide range of cytokines and genes involved in the control of inflammatory response, besides the expression of adenosine receptors, which display immunomodulatory functions. Resveratrol also increased genes associated with redox balance, mitochondrial processes, and trophic factors signaling. The putative genes associated with glioprotective effects of resveratrol, including nuclear factor erythroid derived 2 like 2 (Nrf2), heme oxygenase 1 (HO-1), sirtuin 1 (SIRT1), and phosphoinositide 3-kinase (PI3K)/Akt, were further upregulated by resveratrol. Thus, our data show that resveratrol was able to modulate key genes associated with glial functionality and inflammatory response in astrocyte cultures derived from IFNα/ßR-/- mice. These data are in agreement with previous results, reinforcing its glioprotective effects even in hypothalamic astrocytes with altered inflammatory and immune signaling. Finally, this polyphenol can prepare astrocytes to better respond to injuries, including those associated with neuroimmunology defects.


Asunto(s)
Astrocitos , Receptores de Interferón , Ratas , Animales , Ratones , Resveratrol/farmacología , Resveratrol/metabolismo , Astrocitos/metabolismo , Receptores de Interferón/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas Wistar , Células Cultivadas
19.
Neurotox Res ; 41(6): 526-545, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37378827

RESUMEN

Neonatal hypoxia-ischemia (HI) is one of the main causes of tissue damage, cell death, and imbalance between neuronal excitation and inhibition and synaptic loss in newborns. GABA, the major inhibitory neurotransmitter of the central nervous system (CNS) in adults, is excitatory at the onset of neurodevelopment and its action depends on the chloride (Cl-) cotransporters NKCC1 (imports Cl-) and KCC2 (exports Cl-) expression. Under basal conditions, the NKCC1/KCC2 ratio decreases over neurodevelopment. Thus, changes in this ratio caused by HI may be related to neurological disorders. The present study evaluated the effects of bumetanide (NKCC cotransporters inhibitor) on HI impairments in two neurodevelopmental periods. Male Wistar rat pups, 3 (PND3) and 11 (PND11) days old, were submitted to the Rice-Vannucci model. Animals were divided into 3 groups: SHAM, HI-SAL, and HI-BUM, considering each age. Bumetanide was administered intraperitoneally at 1, 24, 48, and 72 h after HI. NKCC1, KCC2, PSD-95, and synaptophysin proteins were analyzed after the last injection by western blot. Negative geotaxis, righting reflex, open field, object recognition test, and Morris water maze task were performed to assess neurological reflexes, locomotion, and memory function. Tissue atrophy and cell death were evaluated by histology. Bumetanide prevented neurodevelopmental delay, hyperactivity, and declarative and spatial memory deficits. Furthermore, bumetanide reversed HI-induced brain tissue damage, reduced neuronal death and controlled GABAergic tone, maintained the NKCC1/KCC2 ratio, and synaptogenesis close to normality. Thereby, bumetanide appears to play an important therapeutic role in the CNS, protecting the animals against HI damage and improving functional performance.


Asunto(s)
Bumetanida , Hipoxia-Isquemia Encefálica , Ratas , Animales , Masculino , Bumetanida/farmacología , Bumetanida/uso terapéutico , Ratas Wistar , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Isquemia/tratamiento farmacológico , Hipoxia/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/complicaciones , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Encéfalo/metabolismo , Cognición , Animales Recién Nacidos
20.
Int J Dev Neurosci ; 83(2): 165-177, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36453268

RESUMEN

Nowadays, the only treatment for human babies suffering from hypoxia-ischemia (HI) is therapeutic hypothermia (TH). However, a better understanding of the specific effects of TH in males and females is important to improve its clinical application. The present study evaluated the short-term effects of TH on the brain injury and behavioral outcomes in male and female neonatal rats submitted to neonatal HI. Seven-day-old Wistar rats underwent a surgery for unilateral occlusion of the right common carotid artery and were exposed to a hypoxic atmosphere (8% oxygen) for 75 min. Then, the animals in the TH group were submitted to TH (scalp temperature of 32°C) for 5 h. In the behavioral tests, no remarkable differences triggered by HI or TH were observed relative to SHAM animals. Only females of the HI group presented lower latency to complete the righting reflex test. TH reduced the volume of brain injury in males, but not in females. The animals of the HI group showed a reduction in the number of neurons in the CA1 and dentate gyrus (DG) regions of the hippocampus and TH partially prevented neuronal death. In the CA1 region of the hippocampus, animals from the HI group showed more degenerating cells relative to the SHAM, which was reversed by TH. In the DG, animals from the HI group showed an increase in the number of degenerating neurons, which was partially reversed by TH only in males. Our data show that HI leads to a brain injury, which was attenuated by TH in a sex-dependent way and clarify the importance of the assessment of males and females in order to outline specific strategies for the treatment of each sex in newborns suffering from HI.


Asunto(s)
Lesiones Encefálicas , Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Humanos , Ratas , Animales , Masculino , Femenino , Ratas Wistar , Animales Recién Nacidos , Hipoxia-Isquemia Encefálica/terapia , Isquemia/terapia , Hipoxia , Encéfalo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA