Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 18(6): e3000722, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32569301

RESUMEN

Inflammation and infection can trigger local tissue Na+ accumulation. This Na+-rich environment boosts proinflammatory activation of monocyte/macrophage-like cells (MΦs) and their antimicrobial activity. Enhanced Na+-driven MΦ function requires the osmoprotective transcription factor nuclear factor of activated T cells 5 (NFAT5), which augments nitric oxide (NO) production and contributes to increased autophagy. However, the mechanism of Na+ sensing in MΦs remained unclear. High extracellular Na+ levels (high salt [HS]) trigger a substantial Na+ influx and Ca2+ loss. Here, we show that the Na+/Ca2+ exchanger 1 (NCX1, also known as solute carrier family 8 member A1 [SLC8A1]) plays a critical role in HS-triggered Na+ influx, concomitant Ca2+ efflux, and subsequent augmented NFAT5 accumulation. Moreover, interfering with NCX1 activity impairs HS-boosted inflammatory signaling, infection-triggered autolysosome formation, and subsequent antibacterial activity. Taken together, this demonstrates that NCX1 is able to sense Na+ and is required for amplifying inflammatory and antimicrobial MΦ responses upon HS exposure. Manipulating NCX1 offers a new strategy to regulate MΦ function.


Asunto(s)
Macrófagos/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Sodio/metabolismo , Empalme Alternativo/genética , Animales , Calcio/metabolismo , Espacio Extracelular/metabolismo , Silenciador del Gen/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Iones , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Ratones , Óxido Nítrico/biosíntesis , Células RAW 264.7 , Cloruro de Sodio/farmacología
2.
Nature ; 551(7682): 585-589, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29143823

RESUMEN

A Western lifestyle with high salt consumption can lead to hypertension and cardiovascular disease. High salt may additionally drive autoimmunity by inducing T helper 17 (TH17) cells, which can also contribute to hypertension. Induction of TH17 cells depends on gut microbiota; however, the effect of salt on the gut microbiome is unknown. Here we show that high salt intake affects the gut microbiome in mice, particularly by depleting Lactobacillus murinus. Consequently, treatment of mice with L. murinus prevented salt-induced aggravation of actively induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension by modulating TH17 cells. In line with these findings, a moderate high-salt challenge in a pilot study in humans reduced intestinal survival of Lactobacillus spp., increased TH17 cells and increased blood pressure. Our results connect high salt intake to the gut-immune axis and highlight the gut microbiome as a potential therapeutic target to counteract salt-sensitive conditions.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Lactobacillus/efectos de los fármacos , Lactobacillus/aislamiento & purificación , Cloruro de Sodio/farmacología , Células Th17/efectos de los fármacos , Células Th17/inmunología , Animales , Autoinmunidad/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/microbiología , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/terapia , Heces/microbiología , Humanos , Hipertensión/inducido químicamente , Ácidos Indolacéticos/metabolismo , Indoles/metabolismo , Intestinos/citología , Intestinos/efectos de los fármacos , Intestinos/inmunología , Intestinos/microbiología , Lactobacillus/inmunología , Activación de Linfocitos/efectos de los fármacos , Recuento de Linfocitos , Masculino , Ratones , Proyectos Piloto , Cloruro de Sodio/administración & dosificación , Simbiosis , Células Th17/citología , Triptófano/metabolismo
3.
Circulation ; 144(2): 144-158, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-33906377

RESUMEN

BACKGROUND: Dietary high salt (HS) is a leading risk factor for mortality and morbidity. Serum sodium transiently increases postprandially but can also accumulate at sites of inflammation affecting differentiation and function of innate and adaptive immune cells. Here, we focus on how changes in extracellular sodium, mimicking alterations in the circulation and tissues, affect the early metabolic, transcriptional, and functional adaption of human and murine mononuclear phagocytes. METHODS: Using Seahorse technology, pulsed stable isotope-resolved metabolomics, and enzyme activity assays, we characterize the central carbon metabolism and mitochondrial function of human and murine mononuclear phagocytes under HS in vitro. HS as well as pharmacological uncoupling of the electron transport chain under normal salt is used to analyze mitochondrial function on immune cell activation and function (as determined by Escherichiacoli killing and CD4+ T cell migration capacity). In 2 independent clinical studies, we analyze the effect of a HS diet during 2 weeks (URL: http://www.clinicaltrials.gov. Unique identifier: NCT02509962) and short-term salt challenge by a single meal (URL: http://www.clinicaltrials.gov. Unique identifier: NCT04175249) on mitochondrial function of human monocytes in vivo. RESULTS: Extracellular sodium was taken up into the intracellular compartment, followed by the inhibition of mitochondrial respiration in murine and human macrophages. Mechanistically, HS reduces mitochondrial membrane potential, electron transport chain complex II activity, oxygen consumption, and ATP production independently of the polarization status of macrophages. Subsequently, cell activation is altered with improved bactericidal function in HS-treated M1-like macrophages and diminished CD4+ T cell migration in HS-treated M2-like macrophages. Pharmacological uncoupling of the electron transport chain under normal salt phenocopies HS-induced transcriptional changes and bactericidal function of human and murine mononuclear phagocytes. Clinically, also in vivo, rise in plasma sodium concentration within the physiological range reversibly reduces mitochondrial function in human monocytes. In both a 14-day and single meal HS challenge, healthy volunteers displayed a plasma sodium increase of [Formula: see text] and [Formula: see text] respectively, that correlated with decreased monocytic mitochondrial oxygen consumption. CONCLUSIONS: Our data identify the disturbance of mitochondrial respiration as the initial step by which HS mechanistically influences immune cell function. Although these functional changes might help to resolve bacterial infections, a shift toward proinflammation could accelerate inflammatory cardiovascular disease.


Asunto(s)
Mitocondrias/metabolismo , Fagocitos/metabolismo , Cloruro de Sodio Dietético/efectos adversos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Adulto Joven
4.
J Public Health Manag Pract ; 28(Suppl 6): S381-S387, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36194810

RESUMEN

The Opioid Rapid Response Program (ORRP) is a federal program designed to support states in mitigating risks to patients who lose access to a prescriber of opioids or other controlled substances. Displaced patients might face risks of withdrawal, overdose, or other harms. Rapid response efforts to mitigate risks require coordination across multiple parts of the health care system. This case study describes an ORRP-coordinated event, including notification from law enforcement, information sharing with state health officials, state-coordinated response efforts, key observations, and lessons learned. Timely risk mitigation and care continuity required coordination between law enforcement and public health in advance of the disruption and throughout the state-led response. Patients' acute and prolonged health care needs were complex and highlight the importance of investing time and resources in coordinated, multisector state and local preparedness for these types of disruptions.


Asunto(s)
Analgésicos Opioides , Sobredosis de Droga , Analgésicos Opioides/efectos adversos , Connecticut , Sustancias Controladas , Sobredosis de Droga/prevención & control , Humanos , Aplicación de la Ley , Estados Unidos
5.
Immunol Cell Biol ; 99(1): 84-96, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32888231

RESUMEN

Myeloid cells regulate bone density in response to increased salt (NaCl) intake via the osmoprotective transcription factor, nuclear factor of activated T cells-5 (NFAT-5). Because orthodontic tooth movement (OTM) is a pseudoinflammatory immunological process, we investigated the influence of NaCl and NFAT-5 on the expression pattern of macrophages in a model of simulated OTM. RAW264.7 macrophages were exposed for 4 h to 2 g cm-2 compressive or 16% tensile or no mechanical strain (control), with or without the addition of 40 mm NaCl. We analyzed the expression of inflammatory genes and proteins [tumor necrosis factor (TNF), interleukin (IL)-6 and prostaglandin endoperoxide synthase-2 (Ptgs-2)/prostaglandin E2 (PG-E2)] by real-time-quantitative PCR and ELISA. To investigate the role of NFAT-5 in these responses, NFAT-5 was both constitutively expressed and silenced. Salt and compressive strain, but not tensile strain increased the expression of NFAT-5 and most tested inflammatory factors in macrophages. NaCl induced the expression of Ptgs-2/PG-E2 and TNF, whereas secretion of IL-6 was inhibited. Similarly, a constitutive expression of NFAT-5 reduced IL-6 expression, while increasing Ptgs-2/PG-E2 and TNF expression. Silencing of NFAT-5 upregulated IL-6 and reduced Ptgs-2/PG-E2 and TNF expression. Salt had an impact on the expression profile of macrophages as a reaction to compressive and tensile strain that occur during OTM. This was mediated via NFAT-5, which surprisingly also seems to play a regulatory role in mechanotransduction of compressive strain. Sodium accumulation in the periodontal ligament caused by dietary salt consumption might propagate local osteoclastogenesis via increased local inflammation and thus OTM velocity, but possibly also entail side effects such as dental root resorptions or periodontal bone loss.


Asunto(s)
Cloruro de Sodio Dietético , Cloruro de Sodio , Macrófagos , Mecanotransducción Celular , Factores de Transcripción
6.
Int J Mol Sci ; 22(2)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435280

RESUMEN

Dietary salt uptake and inflammation promote sodium accumulation in tissues, thereby modulating cells like macrophages and fibroblasts. Previous studies showed salt effects on periodontal ligament fibroblasts and on bone metabolism by expression of nuclear factor of activated T-cells-5 (NFAT-5). Here, we investigated the impact of salt and NFAT-5 on osteoclast activity and orthodontic tooth movement (OTM). After treatment of osteoclasts without (NS) or with additional salt (HS), we analyzed gene expression and the release of tartrate-resistant acid phosphatase and calcium phosphate resorption. We kept wild-type mice and mice lacking NFAT-5 in myeloid cells either on a low, normal or high salt diet and inserted an elastic band between the first and second molar to induce OTM. We analyzed the expression of genes involved in bone metabolism, periodontal bone loss, OTM and bone density. Osteoclast activity was increased upon HS treatment. HS promoted periodontal bone loss and OTM and was associated with reduced bone density. Deletion of NFAT-5 led to increased osteoclast activity with NS, whereas we detected impaired OTM in mice. Dietary salt uptake seems to accelerate OTM and induce periodontal bone loss due to reduced bone density, which may be attributed to enhanced osteoclast activity. NFAT-5 influences this reaction to HS, as we detected impaired OTM and osteoclast activity upon deletion.


Asunto(s)
Pérdida de Hueso Alveolar/metabolismo , Osteoclastos/metabolismo , Osteogénesis , Cloruro de Sodio Dietético/metabolismo , Migración del Diente/metabolismo , Animales , Densidad Ósea , Remodelación Ósea , Masculino , Ratones , Osteoclastos/citología , Ligamento Periodontal/metabolismo , Células RAW 264.7 , Fosfatasa Ácida Tartratorresistente/metabolismo , Factores de Transcripción/metabolismo
7.
BMC Oral Health ; 21(1): 405, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34407790

RESUMEN

PURPOSE: Many adult orthodontic patients suffer from periodontitis, which is caused by oral pathogens such as the gram-negative Aggregatibacter actinomycetemcomitans (Agac). Like orthodontic tooth movement, periodontitis is associated with inflammation and alveolar bone remodelling thereby affecting orthodontic treatment. Interactions of both processes, however, are not sufficiently explored, particularly with regard to oxidative stress. METHODS: After preincubation with Agac lysate for 24 h periodontal ligament fibroblasts (PDLF) were either stretched or compressed for further 48 h simulating orthodontic forces in vitro. We analysed the expression of genes and proteins involved in the formation of reactive oxygen species (NOX-4, ROS) and nitric oxide (NOS-2), inflammation (TNF, IL-6, PTGS-2) and bone remodelling (OPG, RANKL). RESULTS: Agac lysate elevated the expression of NOX-4, NOS-2, inflammatory IL-6 and PTGS-2 and the bone-remodelling RANKL/OPG ratio during compressive, but not tensile mechanical strain. Agac lysate stimulated pressure-induced inflammatory signalling, whereas surprisingly ROS formation was reduced. Pressure-induced downregulation of OPG expression was inhibited by Agac lysate. CONCLUSIONS: Agac lysate impact on the expression of genes and proteins involved in inflammation and bone remodelling as well as ROS formation, when PDLF were subjected to mechanical forces occurring during orthodontic tooth movement.


Asunto(s)
Aggregatibacter actinomycetemcomitans , Ligamento Periodontal , Adulto , Células Cultivadas , Fibroblastos , Humanos , Técnicas de Movimiento Dental
8.
Eur J Oral Sci ; 127(5): 386-395, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31254476

RESUMEN

Increased salt (NaCl) consumption triggers chronic diseases such as hypertension or osteopenia. Its impact on orthodontic tooth movement and periodontitis, however, has not been investigated, although both processes are related to the immune system, with periodontal ligament fibroblasts (PDLFs) playing a key mediating role. Here, we investigated the impact of NaCl on the expression pattern of PDLFs in a model of simulated compressive orthodontic strain. Periodontal ligament fibroblasts were preincubated for 24 h with additional 0 or 40 mM NaCl and concurrently treated for another 48 h with or without compressive strain of 2 g cm-2 . We analyzed the expression of genes and proteins involved in orthodontic tooth movement by reverse transcription quantitative polymerase chain reaction (RT-qPCR), ELISA, and immunoblot. Co-culture experiments were performed to observe PDLF-mediated osteoclastogenesis. A higher (40 mM) concentration of NaCl in the culture medium resulted in increased secretion of prostaglandin, expression of alkaline phosphatase, and expression of genes involved in extracellular matrix remodeling, but decreased compression-induced expression of the interleukin-6 (IL6) gene. The 40 mM concentration of NaCl also enhanced receptor activator of nuclear factor kappa-B ligand (RANKL) but reduced that of osteoprotegerin (OPG), resulting in upregulated PDLF-mediated osteoclastogenesis. A high NaCl concentration in the periodontal ligament, corresponding to a high-salt diet in vivo, may influence orthodontic tooth movement and periodontitis through increased secretion of prostaglandins by PDLFs and upregulated PDLF-mediated osteoclastogenesis, possibly accelerating orthodontic tooth movement and propagating periodontitis and periodontal bone loss.


Asunto(s)
Fibroblastos/efectos de los fármacos , Ligamento Periodontal/citología , Cloruro de Sodio/efectos adversos , Técnicas de Movimiento Dental , Fosfatasa Alcalina/metabolismo , Células Cultivadas , Fibroblastos/citología , Humanos , Interleucina-6/metabolismo , Osteoprotegerina/metabolismo , Prostaglandinas/metabolismo , Ligando RANK/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Mol Cell Proteomics ; 15(4): 1323-37, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26764011

RESUMEN

O-Mannosylation is a vital protein modification conserved from fungi to humans. Yeast is a perfect model to study this post-translational modification, because in contrast to mammalsO-mannosylation is the only type ofO-glycosylation. In an essential step toward the full understanding of proteinO-mannosylation we mapped theO-mannose glycoproteome in baker's yeast. Taking advantage of anO-glycan elongation deficient yeast strain to simplify sample complexity, we identified over 500O-glycoproteins from all subcellular compartments for which over 2300O-mannosylation sites were mapped by electron-transfer dissociation (ETD)-based MS/MS. In this study, we focus on the 293O-glycoproteins (over 1900 glycosylation sites identified by ETD-MS/MS) that enter the secretory pathway and are targets of ER-localized proteinO-mannosyltransferases. We find thatO-mannosylation is not only a prominent modification of cell wall and plasma membrane proteins, but also of a large number of proteins from the secretory pathway with crucial functions in protein glycosylation, folding, quality control, and trafficking. The analysis of glycosylation sites revealed thatO-mannosylation is favored in unstructured regions and ß-strands. Furthermore,O-mannosylation is impeded in the proximity ofN-glycosylation sites suggesting the interplay of these types of post-translational modifications. The detailed knowledge of the target proteins and theirO-mannosylation sites opens for discovery of new roles of this essential modification in eukaryotes, and for a first glance on the evolution of different types ofO-glycosylation from yeast to mammals.


Asunto(s)
Glicoproteínas/química , Glicoproteínas/metabolismo , Manosa/metabolismo , Proteómica/métodos , Saccharomyces cerevisiae/genética , Sitios de Unión , Retículo Endoplásmico/metabolismo , Glicoproteínas/genética , Glicosilación , Modelos Moleculares , Dominios Proteicos , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Proc Natl Acad Sci U S A ; 112(51): 15648-53, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26644575

RESUMEN

Dynamic cycling of N-Acetylglucosamine (GlcNAc) on serine and threonine residues (O-GlcNAcylation) is an essential process in all eukaryotic cells except yeast, including Saccharomyces cerevisiae and Schizosaccharomyces pombe. O-GlcNAcylation modulates signaling and cellular processes in an intricate interplay with protein phosphorylation and serves as a key sensor of nutrients by linking the hexosamine biosynthetic pathway to cellular signaling. A longstanding conundrum has been how yeast survives without O-GlcNAcylation in light of its similar phosphorylation signaling system. We previously developed a sensitive lectin enrichment and mass spectrometry workflow for identification of the human O-linked mannose (O-Man) glycoproteome and used this to identify a pleothora of O-Man glycoproteins in human cell lines including the large family of cadherins and protocadherins. Here, we applied the workflow to yeast with the aim to characterize the yeast O-Man glycoproteome, and in doing so, we discovered hitherto unknown O-Man glycosites on nuclear, cytoplasmic, and mitochondrial proteins in S. cerevisiae and S. pombe. Such O-Man glycoproteins were not found in our analysis of human cell lines. However, the type of yeast O-Man nucleocytoplasmic proteins and the localization of identified O-Man residues mirror that of the O-GlcNAc glycoproteome found in other eukaryotic cells, indicating that the two different types of O-glycosylations serve the same important biological functions. The discovery opens for exploration of the enzymatic machinery that is predicted to regulate the nucleocytoplasmic O-Man glycosylations. It is likely that manipulation of this type of O-Man glycosylation will have wide applications for yeast bioprocessing.


Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Glicoproteínas/metabolismo , Manosa/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Acetilglucosamina/metabolismo , Secuencia de Aminoácidos , Glicosilación , Datos de Secuencia Molecular , Fosforilación , Proteoma
11.
Molecules ; 23(10)2018 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-30322079

RESUMEN

For proteins entering the secretory pathway, a major factor contributing to maturation and homeostasis is glycosylation. One relevant type of protein glycosylation is O-mannosylation, which is essential and evolutionarily-conserved in fungi, animals, and humans. Our recent proteome-wide study in the eukaryotic model organism Saccharomyces cerevisiae revealed that more than 26% of all proteins entering the secretory pathway receive O-mannosyl glycans. In a first attempt to understand the impact of O-mannosylation on these proteins, we took advantage of a tandem fluorescent timer (tFT) reporter to monitor different aspects of protein dynamics. We analyzed tFT-reporter fusions of 137 unique O-mannosylated proteins, mainly of the secretory pathway and the plasma membrane, in mutants lacking the major protein O-mannosyltransferases Pmt1, Pmt2, or Pmt4. In these three pmtΔ mutants, a total of 39 individual proteins were clearly affected, and Pmt-specific substrate proteins could be identified. We observed that O-mannosylation may cause both enhanced and diminished protein abundance and/or stability when compromised, and verified our findings on the examples of Axl2-tFT and Kre6-tFT fusion proteins. The identified target proteins are a valuable resource towards unraveling the multiple functions of O-mannosylation at the molecular level.


Asunto(s)
Manosa/química , Manosiltransferasas/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Membrana Celular , Genes Reporteros , Glicosilación , Manosiltransferasas/metabolismo , Microscopía Fluorescente , Mutación , Estabilidad Proteica , Proteómica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Rheumatology (Oxford) ; 56(4): 556-560, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28013199

RESUMEN

Objective: Skin fibrosis is the predominant feature of SSc and arises from excessive extracellular matrix deposition. Glycosaminoglycans are macromolecules of the extracellular matrix, which facilitate Na + accumulation in the skin. We used 23 Na-MRI to quantify Na + in skin. We hypothesized that skin Na + might accumulate in SSc and might be a biomarker for skin fibrosis. Methods: In this observational case-control study, skin Na + was determined by 23 Na-MRI using a Na + volume coil in 12 patients with diffuse cutaneous SSc and in 21 control subjects. We assessed skin fibrosis by the modified Rodnan skin score prior to 23 Na-MRI and on follow-up 12 months later. Results: 23 Na-MRI demonstrated increased Na + in the fibrotic skin of SSc patients compared with skin from controls [mean ( s . d .): 27.2 (5.6) vs 21.4 (5.3) mmol/l, P < 0.01]. Na + content was higher in fibrotic than in non-fibrotic SSc skin [26.2 (4.8) vs 19.2 (3.4) mmol/l, P < 0.01]. Furthermore, skin Na + amount was correlated with changes in follow-up modified Rodnan skin score (R 2 = 0.68). Conclusions: 23 Na-MRI detected increased Na + in the fibrotic SSc skin; high Na + content was associated with progressive skin disease. Our findings provide the first evidence that 23 Na-MRI might be a promising tool to assess skin Na + and thereby predict progression of skin fibrosis in SSc.


Asunto(s)
Esclerodermia Sistémica/metabolismo , Piel/patología , Sodio/metabolismo , Estudios de Casos y Controles , Femenino , Fibrosis/metabolismo , Antebrazo , Humanos , Extremidad Inferior , Imagen por Resonancia Magnética/métodos , Masculino , Piel/metabolismo , Isótopos de Sodio
13.
Pediatr Nephrol ; 32(2): 201-210, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-26921211

RESUMEN

The skin can serve as an interstitial Na+ reservoir. Local tissue Na+ accumulation increases with age, inflammation and infection. This increased local Na+ availability favors pro-inflammatory immune cell function and dampens their anti-inflammatory capacity. In this review, we summarize available data on how NaCl affects various immune cells. We particularly focus on how salt promotes pro-inflammatory macrophage and T cell function and simultaneously curtails their regulatory and anti-inflammatory potential. Overall, these findings demonstrate that local Na+ availability is a promising novel regulator of immunity. Hence, the modulation of tissue Na+ levels bears broad therapeutic potential: increasing local Na+ availability may help in treating infections, while lowering tissue Na+ levels may be used to treat, for example, autoimmune and cardiovascular diseases.


Asunto(s)
Inflamación/inmunología , Sodio/inmunología , Animales , Eliminación Cutánea , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Sodio/metabolismo , Cloruro de Sodio/farmacología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología
14.
Expert Rev Proteomics ; 10(3): 259-73, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23777216

RESUMEN

Imaging mass spectrometry (IMS) is still a relatively young imaging technique that allows molecular mapping of diverse biomolecules in their natural environment. Furthermore, IMS allows for the direct correlation of tissue histology and proteomic, metabolomic or lipidomic information. In recent years, increasing efforts have been made in the development and improvement of IMS, which aid its application in clinical research. In this article, current frontiers of clinical research applications of IMS are discussed in the context of recent developments of IMS technology. Critical stages in planning and realizing clinical studies are highlighted. Finally, a selection of recent prominent examples for successful clinical applications of IMS is presented.


Asunto(s)
Investigación Biomédica/métodos , Diagnóstico por Imagen/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Humanos , Inmunohistoquímica , Proteómica
15.
Anal Chem ; 84(8): 3716-24, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22455665

RESUMEN

N-Linked protein glycosylation is one of the most prevalent post-translational modifications and is involved in essential cellular functions such as cell-cell interactions and cellular recognition as well as in chronic diseases. In this study, we explored stable isotope labeled carbonyl-reactive tandem mass tags (glyco-TMTs) as a novel approach for the quantification of N-linked glycans. Glyco-TMTs bearing hydrazide- and aminooxy-functionalized groups were compared for glycan reducing end derivatization efficiency and quantification merits. Aminooxy TMTs outperform the hydrazide reagents in terms of labeling efficiency (>95% vs 65% at 0.1 µM) and mass spectrometry based quantification using heavy/light-TMT labeled glycans enabled accurate quantification in MS1 spectra (CV < 15%) over a broad dynamic range (up to 1:40). In contrast, isobaric TMT labeling with quantification of reporter ions in tandem mass spectra suffered from severe ratio compression already at low sample ratios. To demonstrate the practical utility of the developed approach, we characterized the global N-linked glycosylation profiles of the isogenic human colon carcinoma cell lines SW480 (primary tumor) and SW620 (metastatic tumor). The data revealed significant down-regulation of high-mannose glycans in the metastatic cell line.


Asunto(s)
Polisacáridos/análisis , Proteoma/química , Proteómica/métodos , Animales , Línea Celular Tumoral , Glicoproteínas/química , Humanos , Estructura Molecular , Polisacáridos/química , Carbonilación Proteica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
17.
J Orofac Orthop ; 83(6): 361-375, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34142176

RESUMEN

PURPOSE: Apart from other risk factors, mechanical stress on joints can promote the development of osteoarthritis (OA), which can also affect the temporomandibular joint (TMJ), resulting in cartilage degeneration and synovitis. Synovial fibroblasts (SF) play an important role in upkeeping joint homeostasis and OA pathogenesis, but mechanical stress as a risk factor might act differently depending on the type of joint. We thus investigated the relative impact of mechanical stress on the gene expression pattern of SF from TMJs and knee joints to provide new insights into OA pathogenesis. METHODS: Primary SF isolated from TMJs and knee joints of mice were exposed to mechanical strain of varying magnitudes. Thereafter, the expression of marker genes of the extracellular matrix (ECM), inflammation and bone remodelling were analysed by quantitative real-time polymerase chain reaction (RT-qPCR). RESULTS: SF from the knee joints showed increased expression of genes associated with ECM remodelling, inflammation and bone remodelling after mechanical loading, whereas TMJ-derived SF showed reduced expression of genes associated with inflammation and bone remodelling. SF from the TMJ differed from knee-derived SF with regard to expression of ECM, inflammatory and osteoclastogenesis-promoting marker genes during mechanical strain. CONCLUSIONS: Osteoarthritis-related ECM remodelling markers experience almost no changes in strain-induced gene expression, whereas inflammation and bone remodelling processes seem to differ depending on synovial fibroblast origin. Our data indicate that risk factors for the development and progression of osteoarthritis such as mechanical overuse have a different pathological impact in the TMJ compared to the knee joint.


Asunto(s)
Osteoartritis , Articulación Temporomandibular , Ratones , Animales , Articulación Temporomandibular/patología , Osteoartritis/etiología , Osteoartritis/metabolismo , Osteoartritis/patología , Articulación de la Rodilla/metabolismo , Articulación de la Rodilla/patología , Fibroblastos/metabolismo , Inflamación/complicaciones , Inflamación/metabolismo , Expresión Génica
18.
Nat Commun ; 13(1): 1880, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35388002

RESUMEN

Sensing of pathogens by pattern recognition receptors (PRR) is critical to initiate protective host defence reactions. However, activation of the immune system has to be carefully titrated to avoid tissue damage necessitating mechanisms to control and terminate PRR signalling. Dectin-1 is a PRR for fungal ß-glucans on immune cells that is rapidly internalised after ligand-binding. Here, we demonstrate that pathogen recognition by the Dectin-1a isoform results in the formation of a stable receptor fragment devoid of the ligand binding domain. This fragment persists in phagosomal membranes and contributes to signal transduction which is terminated by the intramembrane proteases Signal Peptide Peptidase-like (SPPL) 2a and 2b. Consequently, immune cells lacking SPPL2b demonstrate increased anti-fungal ROS production, killing capacity and cytokine responses. The identified mechanism allows to uncouple the PRR signalling response from delivery of the pathogen to degradative compartments and identifies intramembrane proteases as part of a regulatory circuit to control anti-fungal immune responses.


Asunto(s)
Lectinas Tipo C , Transducción de Señal , Lectinas Tipo C/metabolismo , Ligandos , Proteolisis , Receptores de Reconocimiento de Patrones/metabolismo
19.
Cells ; 10(2)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33535605

RESUMEN

Genetic predisposition, traumatic events, or excessive mechanical exposure provoke arthritic changes in the temporomandibular joint (TMJ). We analysed the impact of mechanical stress that might be involved in the development and progression of TMJ osteoarthritis (OA) on murine synovial fibroblasts (SFs) of temporomandibular origin. SFs were subjected to different protocols of mechanical stress, either to a high-frequency tensile strain for 4 h or to a tensile strain of varying magnitude for 48 h. The TMJ OA induction was evaluated based on the gene and protein secretion of inflammatory factors (Icam-1, Cxcl-1, Cxcl-2, Il-1ß, Il-1ra, Il-6, Ptgs-2, PG-E2), subchondral bone remodelling (Rankl, Opg), and extracellular matrix components (Col1a2, Has-1, collagen and hyaluronic acid deposition) using RT-qPCR, ELISA, and HPLC. A short high-frequency tensile strain had only minor effects on inflammatory factors and no effects on the subchondral bone remodelling induction or matrix constituent production. A prolonged tensile strain of moderate and advanced magnitude increased the expression of inflammatory factors. An advanced tensile strain enhanced the Ptgs-2 and PG-E2 expression, while the expression of further inflammatory factors were decreased. The tensile strain protocols had no effects on the RANKL/OPG expression, while the advanced tensile strain significantly reduced the deposition of matrix constituent contents of collagen and hyaluronic acid. The data indicates that the application of prolonged advanced mechanical stress on SFs promote PG-E2 protein secretion, while the deposition of extracellular matrix components is decreased.


Asunto(s)
Fibroblastos/metabolismo , Osteoartritis/fisiopatología , Receptores de Prostaglandina E/metabolismo , Estrés Mecánico , Articulación Temporomandibular/fisiopatología , Animales , Ratones
20.
FEBS J ; 288(6): 1822-1838, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32710568

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is an aggressive and difficult-to-treat cancer entity. Current therapies ultimately aim to activate the mitochondria-controlled (intrinsic) apoptosis pathway, but complex alterations in intracellular signaling cascades and the extracellular microenvironment hamper treatment response. On the one hand, proteins of the BCL-2 family set the threshold for cell death induction and prevent accidental cellular suicide. On the other hand, controlling a cell's readiness to die also determines whether malignant cells are sensitive or resistant to anticancer treatments. Here, we show that HNSCC cells upregulate the proapoptotic BH3-only protein NOXA in response to hyperosmotic stress. Induction of NOXA is sufficient to counteract the antiapoptotic properties of MCL-1 and switches HNSCC cells from dual BCL-XL/MCL-1 protection to exclusive BCL-XL addiction. Hypertonicity-induced functional loss of MCL-1 renders BCL-XL a synthetically lethal target in HNSCC, and inhibition of BCL-XL efficiently kills HNSCC cells that poorly respond to conventional therapies. We identify hypertonicity-induced upregulation of NOXA as link between osmotic pressure in the tumor environment and mitochondrial priming, which could perspectively be exploited to boost efficacy of anticancer drugs.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Presión Osmótica/fisiología , Proteína bcl-X/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Sinergismo Farmacológico , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Pirimidinas/farmacología , Interferencia de ARN , Tiofenos/farmacología , Microambiente Tumoral/efectos de los fármacos , Proteína bcl-X/antagonistas & inhibidores , Proteína bcl-X/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA