Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nano Lett ; 24(32): 9961-9966, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38994869

RESUMEN

Metasurfaces have revolutionized optical technologies by offering powerful, compact, and versatile solutions to control light. Conducting polymers, characterized by their conjugated molecular structures, facilitate charge transport and exhibit interesting electrical, optical, and mechanical properties. Integrating conducting polymers with optical metasurfaces can unlock new opportunities and functionalities in modern optics. In this work, we demonstrate an electrochemically programmable metasurface with independently controlled metasurface pixels at optical frequencies. Electrochemical modulation of locally conjugated polyaniline on gold nanorods, which are arranged on addressable electrodes according to the Pancharatnam-Berry phase design, enables dynamic control over the metasurface pixels into programmable configurations. With the same metasurface device, we showcase diverse optical functions, including dynamic beam diffraction and varifocal lensing along and off the optical axis. The synergy between flat optics and conducting polymer science holds immense potential to enhance the performance and function versatility of metasurfaces, paving the way for innovative optical applications.

2.
Nano Lett ; 19(1): 1-7, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30071729

RESUMEN

Proteins and peptides play a predominant role in biochemical reactions of living cells. In these complex environments, not only the constitution of the molecules but also their three-dimensional configuration defines their functionality. This so-called secondary structure of proteins is crucial for understanding their function in living matter. Misfolding, for example, is suspected as the cause of neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Ultimately, it is necessary to study a single protein and its folding dynamics. Here, we report a first step in this direction, namely ultrasensitive detection and discrimination of in vitro polypeptide folding and unfolding processes using resonant plasmonic nanoantennas for surface-enhanced vibrational spectroscopy. We utilize poly-l-lysine as a model system which has been functionalized on the gold surface. By in vitro infrared spectroscopy of a single molecular monolayer at the amide I vibrations we directly monitor the reversible conformational changes between α-helix and ß-sheet states induced by controlled external chemical stimuli. Our scheme in combination with advanced positioning of the peptides and proteins and more brilliant light sources is highly promising for ultrasensitive in vitro studies down to the single protein level.


Asunto(s)
Nanotecnología/métodos , Péptidos/química , Pliegue de Proteína , Deficiencias en la Proteostasis/genética , Humanos , Nanoestructuras/química , Conformación Proteica en Hélice alfa/genética , Conformación Proteica en Lámina beta/genética , Estructura Secundaria de Proteína/genética , Proteínas , Deficiencias en la Proteostasis/patología , Espectrofotometría Infrarroja
3.
Chem Rev ; 117(7): 5110-5145, 2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28358482

RESUMEN

Infrared spectroscopy is a powerful tool widely used in research and industry for a label-free and unambiguous identification of molecular species. Inconveniently, its application to spectroscopic analysis of minute amounts of materials, for example, in sensing applications, is hampered by the low infrared absorption cross-sections. Surface-enhanced infrared spectroscopy using resonant metal nanoantennas, or short "resonant SEIRA", overcomes this limitation. Resonantly excited, such metal nanostructures feature collective oscillations of electrons (plasmons), providing huge electromagnetic fields on the nanometer scale. Infrared vibrations of molecules located in these fields are enhanced by orders of magnitude enabling a spectroscopic characterization with unprecedented sensitivity. In this Review, we introduce the concept of resonant SEIRA and discuss the underlying physics, particularly, the resonant coupling between molecular and antenna excitations as well as the spatial extent of the enhancement and its scaling with frequency. On the basis of these fundamentals, different routes to maximize the SEIRA enhancement are reviewed including the choice of nanostructures geometries, arrangements, and materials. Furthermore, first applications such as the detection of proteins, the monitoring of dynamic processes, and hyperspectral infrared chemical imaging are discussed, demonstrating the sensitivity and broad applicability of resonant SEIRA.

4.
Angew Chem Int Ed Engl ; 58(50): 18165-18170, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31544334

RESUMEN

Selective transport and concentration of molecules to specified regions on a substrate both enhances the potential to detect such molecules and provides a path to spatially localize such molecules prior to initiation of subsequent chemical reactions. Here, we first embed radially symmetric α-, ß-, and γ-cyclodextrin gradients in a hydrogel matrix. Driven by host-guest interactions between the cyclodextrins and the target molecule, we observe these gradients can serve to direct 2D molecular transport. Using xanthene dyes and organophosphates as target molecules, we found the transport metrics, e.g., selectivity, rate, and concentration limits, are strongly dependent on the specific cyclodextrin forming the gradient. In all cases, as the concentrating power of the gradient increased, the rate of target concentration slowed, which we hypothesize is because stronger interactions between the target and the cyclodextrin decrease the rate of target diffusion. The concentration enhancement for the nerve agent simulant 4-methylumbelliferyl phosphate (15.8) is the greatest when the gradient is formed using ß-cyclodextrin while directed concentration of cyanomethyl phosphonate, a smaller non-aromatic organophosphate, is observed only for the smaller α-CD. To provide a near real-time read-out of the concentration of the analyte, we used an array of IR resonant metallic nanoantennas tuned to a specific IR absorption band of the analyte to enhance the IR signal generated by the analyte.

5.
Small ; 14(7)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29266737

RESUMEN

In this article, a chiral plasmonic hydrogen-sensing platform using palladium-based nanohelices is demonstrated. Such 3D chiral nanostructures fabricated by nanoglancing angle deposition exhibit strong circular dichroism both experimentally and theoretically. The chiroptical properties of the palladium nanohelices are altered upon hydrogen uptake and sensitively depend on the hydrogen concentration. Such properties are well suited for remote and spark-free hydrogen sensing in the flammable range. Hysteresis is reduced, when an increasing amount of gold is utilized in the palladium-gold hybrid helices. As a result, the linearity of the circular dichroism in response to hydrogen is significantly improved. The chiral plasmonic sensor scheme is of potential interest for hydrogen-sensing applications, where good linearity and high sensitivity are required.

6.
Nano Lett ; 17(9): 5555-5560, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28721735

RESUMEN

High-resolution multicolor printing based on pixelated optical nanostructures is of great importance for promoting advances in color display science. So far, most of the work in this field has been focused on achieving static colors, limiting many potential applications. This inevitably calls for the development of dynamic color displays with advanced and innovative functionalities. In this Letter, we demonstrate a novel dynamic color printing scheme using magnesium-based pixelated Fabry-Pérot cavities by gray scale nanolithography. With controlled hydrogenation and dehydrogenation, magnesium undergoes unique metal and dielectric transitions, enabling distinct blank and color states from the pixelated Fabry-Pérot resonators. Following such a scheme, we first demonstrate dynamic Ishihara plates, in which the encrypted images can only be read out using hydrogen as information decoding key. We also demonstrate a new type of dynamic color generation, which enables fascinating transformations between black/white printing and color printing with fine tonal tuning. Our work will find wide-ranging applications in full-color printing and displays, colorimetric sensing, information encryption and anticounterfeiting.

7.
Opt Express ; 24(22): 25528-25539, 2016 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-27828491

RESUMEN

We perform far-field spectroscopy of infrared metal antennas on silicon oxide layers of different thickness, where we find a splitting of the plasmonic resonance. This splitting can result in a transparency window, corresponding to suppression of antenna scattering, respectively "cloaking" of the antenna. Backed up by theory, we show that this effect is caused by strong coupling between the metal antenna plasmons and the surface phonon polaritons in the oxide layer. The effect is a kind of induced transparency in which the strength of the phonon-polariton field plays the crucial role. It represents a further tuning possibility for the optical performance of infrared devices.

8.
Phys Chem Chem Phys ; 17(33): 21169-75, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25516198

RESUMEN

We report on the impact of the differing spectral near- and far-field properties of resonantly excited gold nanoantennas on the vibrational signal enhancement in surface-enhanced infrared absorption (SEIRA). The knowledge on both spectral characteristics is of considerable importance for the optimization of plasmonic nanostructures for surface-enhanced spectroscopy techniques. From infrared micro-spectroscopic measurements, we simultaneously obtain spectral information on the plasmonic far-field response and, via SEIRA spectroscopy of a test molecule, on the near-field enhancement. The molecular test layer of 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) was deposited on the surface of gold nanoantennas with different lengths and thus different far-field resonance energies. We carefully studied the Fano-type vibrational lines in a broad spectral window, in particular, how the various vibrational signals are enhanced in relation to the ratio of the far-field plasmonic resonance and the molecular vibrational frequencies. As a detailed experimental proof of former simulation studies, we show the clearly red-shifted maximum SEIRA enhancement compared to the far-field resonance.

9.
Nano Lett ; 14(3): 1140-7, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24576073

RESUMEN

A key challenge for the development of active plasmonic nanodevices is the lack of materials with fully controllable plasmonic properties. In this work, we demonstrate that a plasmonic resonance in top-down nanofabricated yttrium antennas can be completely and reversibly turned on and off using hydrogen exposure. We fabricate arrays of yttrium nanorods and optically observe, in extinction spectra, the hydrogen-induced phase transition between the metallic yttrium dihydride and the insulating trihydride. Whereas the yttrium dihydride nanostructures exhibit a pronounced particle plasmon resonance, the transition to yttrium trihydride leads to a complete vanishing of the resonant behavior. The plasmonic resonance in the dihydride state can be tuned over a wide wavelength range by simply varying the size of the nanostructures. Furthermore, we develop an analytical diffusion model to explain the temporal behavior of the hydrogen loading and unloading trajectories observed in our experiments and gain information about the thermodynamics of our device. Thus, our nanorod system serves as a versatile basic building block for active plasmonic devices ranging from switchable perfect absorbers to active local heating control elements.

10.
Nat Commun ; 15(1): 1316, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351147

RESUMEN

Coherent collective oscillations of electrons excited in metallic nanostructures (localized surface plasmons) can confine incident light to atomic scales and enable strong light-matter interactions, which depend nonlinearly on the local field. Direct sampling of such collective electron oscillations in real-time is crucial to performing petahertz scale optical modulation, control, and readout in a quantum nanodevice. Here, we demonstrate real-time tracking of collective electron oscillations in an Au bowtie nanoantenna, by recording photo-assisted tunnelling currents generated by such oscillations in this quantum nanodevice. The collective electron oscillations show a noninstantaneous response to the driving laser fields with a T2 decay time of nearly 8 femtoseconds. The contributions of linear and nonlinear electron oscillations in the generated tunnelling currents were precisely determined. A phase control of electron oscillations in the nanodevice is illustrated. Functioning in ambient conditions, the excitation, phase control, and read-out of coherent electron oscillations pave the way toward on-chip light-wave electronics in quantum nanodevices.

11.
Opt Express ; 19(16): 15047-61, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21934866

RESUMEN

Interaction between micrometer-long nanoantennas within an array considerably modifies the plasmonic resonant behaviour; for fundamental resonances in the infrared already at micrometer distances. In order to get systematic knowledge on the relationship between infrared plasmonic resonances and separation distances dx and dy in longitudinal and transverse direction, respectively, we experimentally studied the optical extinction spectra for rectangularly ordered lithographic gold nanorod arrays on silicon wafers. For small dy, strong broadening of resonances and strongly decreased values of far-field extinction are detected which come along with a decreased near-field intensity, as indicated by near-field amplitude maps of the interacting nanoantennas. In contrast, near-field interaction over small dx does only marginally broaden the resonance. Our findings set a path for optimum design of rectangular nanorod lattices for surface enhanced infrared spectroscopy.


Asunto(s)
Nanotecnología/instrumentación , Simulación por Computador , Electrónica , Oro/química , Nanopartículas del Metal/química , Metales/química , Microscopía Electrónica de Rastreo/métodos , Modelos Teóricos , Nanotecnología/métodos , Óptica y Fotónica , Ondas de Radio , Espectrofotometría Infrarroja/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Resonancia por Plasmón de Superficie
12.
Sci Adv ; 7(19)2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33952513

RESUMEN

Recently in nanophotonics, a rigorous evolution from passive to active metasurfaces has been witnessed. This advancement not only brings forward interesting physical phenomena but also elicits opportunities for practical applications. However, active metasurfaces operating at visible frequencies often exhibit low performance due to design and fabrication restrictions at the nanoscale. In this work, we demonstrate electrochemically controlled metasurfaces with high intensity contrast, fast switching rate, and excellent reversibility at visible frequencies. We use a conducting polymer, polyaniline (PANI), that can be locally conjugated on preselected gold nanorods to actively control the phase profiles of the metasurfaces. The optical responses of the metasurfaces can be in situ monitored and optimized by controlling the PANI growth of subwavelength dimension during the electrochemical process. We showcase electrochemically controlled anomalous transmission and holography with good switching performance. Such electrochemically powered optical metasurfaces lay a solid basis to develop metasurface devices for real-world optical applications.

13.
Adv Mater ; 33(11): e2008259, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33554349

RESUMEN

Reversible hydrogen uptake and the metal/dielectric transition make the Mg/MgH2 system a prime candidate for solid-state hydrogen storage and dynamic plasmonics. However, high dehydrogenation temperatures and slow dehydrogenation hamper broad applicability. One promising strategy to improve dehydrogenation is the formation of metastable γ-MgH2 . A nanoparticle (NP) design, where γ-MgH2 forms intrinsically during hydrogenation is presented and a formation mechanism based on transmission electron microscopy results is proposed. Volume expansion during hydrogenation causes compressive stress within the confined, anisotropic NPs, leading to plastic deformation of ß-MgH2 via (301)ß twinning. It is proposed that these twins nucleate γ-MgH2 nanolamellas, which are stabilized by residual compressive stress. Understanding this mechanism is a crucial step toward cycle-stable, Mg-based dynamic plasmonic and hydrogen-storage materials with improved dehydrogenation. It is envisioned that a more general design of confined NPs utilizes the inherent volume expansion to reform γ-MgH2 during each rehydrogenation.

14.
ACS Nano ; 15(6): 10393-10405, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34008953

RESUMEN

A general and quantitative method to characterize molecular transport in polymers with good temporal and high spatial resolution, in complex environments, is an important need of the pharmaceutical, textile, and food and beverage packaging industries, and of general interest to the polymer science community. Here we show how the amplified infrared (IR) absorbance sensitivity provided by plasmonic nanoantenna-based surface enhanced infrared absorption (SEIRA) provides such a method. SEIRA enhances infrared (IR) absorbances primarily within 50 nm of the nanoantennas, enabling localized quantitative detection of even trace quantities of analytes and diffusion measurements in even thin polymer films. Relative to a commercial attenuated total internal reflection (ATR) system, the limit of detection is enhanced at least 13-fold, and as is important for measuring diffusion, the detection volume is about 15 times thinner. Via this approach, the diffusion coefficient and solubility of specific molecules, including l-ascorbic acid (vitamin C), ethanol, various sugars, and water, in both simple and complex mixtures (e.g., beer and a cola soda), were determined in poly(methyl methacrylate), high density polyethylene (HDPE)-based, and polypropylene-based polyolefin films as thin as 250 nm.


Asunto(s)
Polímeros , Agua , Difusión , Solubilidad
15.
Sci Technol Adv Mater ; 11(5): 054506, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27877363

RESUMEN

Plasmons in metallic nanomaterials exhibit very strong size and shape effects, and thus have recently gained considerable attention in nanotechnology, information technology, and life science. In this review, we overview the fundamental properties of plasmons in materials with various dimensionalities and discuss the optical functional properties of localized plasmon polaritons in nanometer-scale to atomic-scale objects. First, the pioneering works on plasmons by electron energy loss spectroscopy are briefly surveyed. Then, we discuss the effects of atomistic charge dynamics on the dispersion relation of propagating plasmon modes, such as those for planar crystal surface, atomic sheets and straight atomic wires. Finally, standing-wave plasmons, or antenna resonances of plasmon polariton, of some widely used nanometer-scale structures and atomic-scale wires (the smallest possible plasmonic building blocks) are exemplified along with their applications.

16.
Sci Adv ; 6(36)2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32917622

RESUMEN

Displays are an indispensable medium to visually convey information in our daily life. Although conventional dye-based color displays have been rigorously advanced by world leading companies, critical issues still remain. For instance, color fading and wavelength-limited resolution restrict further developments. Plasmonic colors emerging from resonant interactions between light and metallic nanostructures can overcome these restrictions. With dynamic characteristics enabled by functional materials, dynamic plasmonic coloration may find a variety of applications in display technologies. In this review, we elucidate basic concepts for dynamic plasmonic color generation and highlight recent advances. In particular, we devote our review to a selection of dynamic controls endowed by functional materials, including magnesium, liquid crystals, electrochromic polymers, and phase change materials. We also discuss their performance in view of potential applications in current display technologies.

17.
Adv Mater ; 32(41): e1905640, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32077543

RESUMEN

Molecular chirality is a geometric property that is of great importance in chemistry, biology, and medicine. Recently, plasmonic nanostructures that exhibit distinct chiroptical responses have attracted tremendous interest, given their ability to emulate the properties of chiral molecules with tailored and pronounced optical characteristics. However, the optical chirality of such human-made structures is in general static and cannot be manipulated postfabrication. Herein, different concepts to reconfigure the chiroptical responses of plasmonic nano- and micro-objects are outlined. Depending on the utilized strategies and stimuli, the chiroptical signature, the 3D structural conformation, or both can be reconfigured. Optical devices based on plasmonic nanostructures with reconfigurable chirality possess great potential in practical applications, ranging from polarization conversion elements to enantioselective analysis, chiral sensing, and catalysis.

18.
ACS Photonics ; 7(11): 2958-2965, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33241075

RESUMEN

Reconfigurable optical systems are the object of continuing, intensive research activities, as they hold great promise for realizing a new generation of compact, miniaturized, and flexible optical devices. However, current reconfigurable systems often tune only a single state variable triggered by an external stimulus, thus, leaving out many potential applications. Here we demonstrate a reconfigurable multistate optical system enabled by phase transitions in vanadium dioxide (VO2). By controlling the phase-transition characteristics of VO2 with simultaneous stimuli, the responses of the optical system can be reconfigured among multiple states. In particular, we show a quadruple-state dynamic plasmonic display that responds to both temperature tuning and hydrogen-doping. Furthermore, we introduce an electron-doping scheme to locally control the phase-transition behavior of VO2, enabling an optical encryption device encoded by multiple keys. Our work points the way toward advanced multistate reconfigurable optical systems, which substantially outperform current optical devices in both breadth of capabilities and functionalities.

19.
ACS Sens ; 4(8): 1966-1972, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31134801

RESUMEN

Proteins perform a variety of essential functions in living cells and thus are of critical interest for drug delivery as well as disease biomarkers. The different functions are derived from a hugely diverse set of structures, fueling interest in their conformational states. Surface-enhanced infrared absorption spectroscopy has been utilized to detect and discriminate protein monomers. As an important step forward, we are investigating collagen peptides consisting of  a  triple helix. While they constitute the main structural building blocks in many complex proteins, they are also a perfect model system for the complex proteins relevant in biological systems. Their complex spectroscopic information as well as the overall small size present a significant challenge for their detection and discrimination. Using resonant plasmonic nanoslits, which are known to show larger specificity compared to nanoantennas, we overcome this challenge. We perform in vitro surface-enhanced absorption spectroscopy studies and track the conformational changes of these collagen peptides under two different external stimuli, which are temperature and chemical surroundings. Modeling the coupling between the amide I vibrational modes and the plasmonic resonance, we can extract the conformational state of the collages and thus monitor the folding and unfolding dynamics of even a single monolayer. This leads to new prospects in studies of single layers of proteins and their folding behavior in minute amounts in a living environment.


Asunto(s)
Colágeno/química , Nanopartículas/química , Péptidos/química , Técnicas Biosensibles , Técnicas Electroquímicas , Tamaño de la Partícula , Espectrofotometría Infrarroja , Propiedades de Superficie
20.
ACS Sens ; 4(8): 1973-1979, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31274277

RESUMEN

Monosaccharides, which include the simple sugars such as glucose and fructose, are among the most important carbohydrates in the human diet. Certain chronic diseases, e.g., diabetes mellitus, are associated with anomalous glucose blood levels. Detecting and measuring the levels of monosaccharides in vivo or in aqueous solutions is thus of the utmost importance in life science, health, and point-of-care applications. Noninvasive sensing would avoid problems such as pain and potential infection hazards. Here, with the help of surface enhanced infrared absorption (SEIRA) spectroscopy, we demonstrate the reliable optical detection in the mid-infrared spectral range of pure glucose and fructose solutions as well as mixtures of both in aqueous solution. We utilize a reflection flow cell geometry with physiologically relevant concentrations as small as 10 g/L. As significant improvement over the standard baseline correction employed in SEIRA applications, we utilize principal component analysis (PCA) as machine learning algorithm, which is ideally suited for the extraction of vibrational data. We anticipate our results as important step in biosensing applications that will stimulate efforts to further improve the employed SEIRA substrates, the noise level of the spectroscopic light source, as well as the flow cell environment en route to significantly higher sensitivities and quantitative analysis, even in tear drops.


Asunto(s)
Técnicas Biosensibles , Fructosa/análisis , Glucosa/análisis , Nanotecnología , Humanos , Análisis de Componente Principal , Espectrofotometría Infrarroja , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA