Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37175480

RESUMEN

Five million non-melanoma skin cancers occur globally each year, and it is one of the most common malignant cancers. The dysregulation of the endocannabinoid system, particularly cannabinoid receptor 2 (CB2), is implicated in skin cancer development, progression, and metastasis. Comparing wildtype (WT) to systemic CB2 knockout (CB2-/-) mice, we performed a spontaneous cancer study in one-year old mice, and subsequently used the multi-stage chemical carcinogenesis model, wherein cancer is initiated by 7,12-dimethylbenz[a]anthracene (DMBA) and promoted by 12-O-tetradecanoylphorbol-13-acetate (TPA). We found that aging CB2-/- mice have an increased incidence of spontaneous cancerous and precancerous skin lesions compared to their WT counterparts. In the DMBA/TPA model, CB2-/- developed more and larger papillomas, had decreased spontaneous regression of papillomas, and displayed an altered systemic immune profile, including upregulated CD4+ T cells and dendritic cells, compared to WT mice. Immune cell infiltration in the tumor microenvironment was generally low for both genotypes, although a trend of higher myeloid-derived suppressor cells was observed in the CB2-/- mice. CB2 expression in carcinogen-exposed skin was significantly higher compared to naïve skin in WT mice, suggesting a role of CB2 on keratinocytes. Taken together, our data show that endogenous CB2 activation plays an anti-tumorigenic role in non-melanoma skin carcinogenesis, potentially via an immune-mediated response involving the alteration of T cells and myeloid cells coupled with the modulation of keratinocyte activity.


Asunto(s)
Papiloma , Neoplasias Cutáneas , Animales , Ratones , 9,10-Dimetil-1,2-benzantraceno/toxicidad , Carcinogénesis/genética , Carcinogénesis/patología , Carcinógenos/toxicidad , Papiloma/patología , Receptores de Cannabinoides , Piel/patología , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Acetato de Tetradecanoilforbol/toxicidad , Microambiente Tumoral
2.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36233351

RESUMEN

Erythropoietin (EPO) is a pleiotropic cytokine that classically drives erythropoiesis but can also induce bone loss by decreasing bone formation and increasing resorption. Deletion of the EPO receptor (EPOR) on osteoblasts or B cells partially mitigates the skeletal effects of EPO, thereby implicating a contribution by EPOR on other cell lineages. This study was designed to define the role of monocyte EPOR in EPO-mediated bone loss, by using two mouse lines with conditional deletion of EPOR in the monocytic lineage. Low-dose EPO attenuated the reduction in bone volume (BV/TV) in Cx3cr1Cre EPORf/f female mice (27.05%) compared to controls (39.26%), but the difference was not statistically significant. To validate these findings, we increased the EPO dose in LysMCre model mice, a model more commonly used to target preosteoclasts. There was a significant reduction in both the increase in the proportion of bone marrow preosteoclasts (CD115+) observed following high-dose EPO administration and the resulting bone loss in LysMCre EPORf/f female mice (44.46% reduction in BV/TV) as compared to controls (77.28%), without interference with the erythropoietic activity. Our data suggest that EPOR in the monocytic lineage is at least partially responsible for driving the effect of EPO on bone mass.


Asunto(s)
Eritropoyetina , Receptores de Eritropoyetina , Animales , Eritropoyetina/metabolismo , Eritropoyetina/farmacología , Femenino , Ratones , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Receptores de Eritropoyetina/genética , Receptores de Eritropoyetina/metabolismo , Transducción de Señal
3.
Acta Haematol ; 144(3): 252-258, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32662775

RESUMEN

BACKGROUND: Erythroid stimulating agents (ESAs) have pleiotropic effects, and in animal and human studies those exposed to high erythropoietin had lower blood glucose. OBJECTIVE: To determine the association between ESA and glucose in anemia-treated patients with myelodysplastic syndromes (MDS) or multiple myeloma (MM). PATIENTS AND METHODS: Patients' glucose levels were compared while on to while off ESA, and all served as their own controls. To test the association between ESA and blood glucose, we employed a linear mixed model, accounting for variability in the number of measurements for each patient. RESULTS: Charts of 20 patients were reviewed. Mean age was 77 ± 9.8 years (range 50-91). Thirteen patients had MDS, and 8 had MM (1 with both). Glucose (mean ± standard error of the mean) was 116.38 ± 5.21 mg/dL without ESA, as opposed to 105.64 ± 5.11 mg/dL with ESA (p < 0.0001). The 3 diabetic and 5 steroid-treated patients also demonstrated reduced glucose by approximately 19 mg/dL with ESA (p = 0.003 and p = 0.0001, respectively). There was no difference in collective hemoglobin levels between the 2 groups. CONCLUSION: ESA treatment for anemia is associated with lower blood glucose in hematologic patients. In those who also have diabetes mellitus, ESA might contribute to glucose control, and even to hypoglycemia. Glucose monitoring is thus advised. Further studies with both diabetic and nondiabetic patients are needed to clarify this association and underlying mechanisms.


Asunto(s)
Anemia/tratamiento farmacológico , Glucemia/análisis , Darbepoetina alfa/uso terapéutico , Epoetina alfa/uso terapéutico , Anciano , Anciano de 80 o más Años , Anemia/etiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mieloma Múltiple/complicaciones , Mieloma Múltiple/patología , Síndromes Mielodisplásicos/complicaciones , Síndromes Mielodisplásicos/patología
4.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35008482

RESUMEN

The two erythropoietin (EPO) receptor forms mediate different cellular responses to erythropoietin. While hematopoiesis is mediated via the homodimeric EPO receptor (EPOR), tissue protection is conferred via a heteromer composed of EPOR and CD131. In the skeletal system, EPO stimulates osteoclast precursors and induces bone loss. However, the underlying molecular mechanisms are still elusive. Here, we evaluated the role of the heteromeric complex in bone metabolism in vivo and in vitro by using Cibinetide (CIB), a non-erythropoietic EPO analogue that exclusively binds the heteromeric receptor. CIB is administered either alone or in combination with EPO. One month of CIB treatment significantly increased the cortical (~5.8%) and trabecular (~5.2%) bone mineral density in C57BL/6J WT female mice. Similarly, administration of CIB for five consecutive days to female mice that concurrently received EPO on days one and four, reduced the number of osteoclast progenitors, defined by flow cytometry as Lin-CD11b-Ly6Chi CD115+, by 42.8% compared to treatment with EPO alone. In addition, CIB alone or in combination with EPO inhibited osteoclastogenesis in vitro. Our findings introduce CIB either as a stand-alone treatment, or in combination with EPO, as an appealing candidate for the treatment of the bone loss that accompanies EPO treatment.


Asunto(s)
Densidad Ósea/efectos de los fármacos , Eritropoyetina/metabolismo , Oligopéptidos/farmacología , Osteogénesis/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Hematopoyesis/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo
5.
Int J Mol Sci ; 21(11)2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32471308

RESUMEN

Recent studies have demonstrated that erythropoietin (EPO) treatment in mice results in trabecular bone loss. Here, we investigated the dose-response relationship between EPO, hemoglobin (Hgb) and bone loss and examined the reversibility of EPO-induced damage. Increasing doses of EPO over two weeks led to a dose-dependent increase in Hgb in young female mice, accompanied by a disproportionate decrease in trabecular bone mass measured by micro-CT (µCT). Namely, increasing EPO from 24 to 540 IU/week produced a modest 12% rise in Hgb (20.2 ± 1.3 mg/dL vs 22.7 ± 1.3 mg/dL), while trabecular bone volume fraction (BV/TV) in the distal femur decreased dramatically (27 ± 8.5% vs 53 ± 10.2% bone loss). To explore the long-term skeletal effects of EPO, we treated mice for two weeks (540 IU/week) and monitored bone mass changes after treatment cessation. Six weeks post-treatment, there was only a partial recovery of the trabecular microarchitecture in the femur and vertebra. EPO-induced bone loss is therefore dose-dependent and mostly irreversible at doses that offer only a minor advantage in the treatment of anemia. Because patients requiring EPO therapy are often prone to osteoporosis, our data advocate for using the lowest effective EPO dose for the shortest period of time to decrease thromboembolic complications and minimize the adverse skeletal outcome.


Asunto(s)
Resorción Ósea/etiología , Eritropoyetina/efectos adversos , Animales , Resorción Ósea/diagnóstico por imagen , Resorción Ósea/patología , Hueso Esponjoso/diagnóstico por imagen , Hueso Esponjoso/efectos de los fármacos , Células Cultivadas , Eritropoyetina/administración & dosificación , Eritropoyetina/farmacología , Femenino , Fémur/diagnóstico por imagen , Fémur/efectos de los fármacos , Hemoglobinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Columna Vertebral/diagnóstico por imagen , Columna Vertebral/efectos de los fármacos
6.
Pediatr Nephrol ; 33(11): 2123-2129, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30030607

RESUMEN

BACKGROUND: Decreased production of erythropoietin (EPO) is a major cause of anemia associated with chronic kidney disease (CKD). Treatment with recombinant human EPO (rHuEPO) improves patients' quality of life and survival; however, there is a marked variability in response to rHuEPO. At present, no available laboratory test is capable of evaluating responsiveness to EPO treatment. The aim of the present study was to use an in vitro bioassay to estimate the effect of uremic environment on EPO-dependent erythroid cell proliferation. METHODS: EPO-dependent human erythroleukemia cells (UT-7) were incubated with exogenous EPO (2 u/ml) and sera obtained from 60 pediatric patients (aged 1-23 years). Three groups were studied: (1) 12 children on dialysis (4 peritoneal, 8 hemodialysis); (2) 28 patients with CKD 1-5 (not on dialysis), and (3) 20 healthy children. RESULTS: Sera from dialysis patients inhibited UT-7 cell growth compared to the CKD group and healthy controls at 48 h (p = 0.003 and p = 0.04, respectively) and 72 h of culture (p = 0.02 and p = 0.07, respectively). In 18 patients treated with rHuEPO, a significant inverse correlation was found between the EPO resistance index and cell proliferation at 48 h (p = 0.007, r = - 0.63) and 72 h (p = 0.03, r = - 0.52). CONCLUSIONS: Our findings support the presence of erythropoiesis inhibitory substances in uremic sera. EPO/EPO-R-dependent mechanisms may play a role in inhibiting erythropoiesis. The in vitro bioassay described herein may serve as an indicator of rHuEPO responsiveness which may encourage further investigation of underlying mechanisms of EPO resistance.


Asunto(s)
Anemia/tratamiento farmacológico , Bioensayo , Eritropoyetina/farmacología , Insuficiencia Renal Crónica/sangre , Uremia/sangre , Adolescente , Adulto , Anemia/sangre , Anemia/etiología , Línea Celular Tumoral , Niño , Preescolar , Resistencia a Medicamentos , Eritropoyesis/efectos de los fármacos , Eritropoyetina/uso terapéutico , Femenino , Humanos , Lactante , Masculino , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Diálisis Renal , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/terapia , Resultado del Tratamiento , Uremia/etiología , Uremia/terapia , Adulto Joven
7.
Cytokine ; 89: 155-159, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-26822707

RESUMEN

Erythropoietin (Epo) is the main hormone that regulates the production of red blood cells (hematopoiesis), by stimulating their progenitors. Beyond this vital function, several emerging roles have been noted for Epo in other tissues, including neurons, heart and retina. The skeletal system is also affected by Epo, however, its actions on bone are, as yet, controversial. Here, we review the seemingly contradicting evidence regarding Epo effects on bone remodeling. We also discuss the evidence pointing to a direct versus indirect effect of Epo on the osteoblastic and osteoclastic cell lineages. The current controversy may derive from a context-dependent mode of action of Epo, namely opposite skeletal actions during bone regeneration and steady-state bone remodeling. Differences in conclusions from the published in-vitro studies may thus relate to the different experimental conditions. Taken together, these studies indicate a complexity of Epo functions in bone cells.


Asunto(s)
Regeneración Ósea/fisiología , Remodelación Ósea/fisiología , Huesos/metabolismo , Eritropoyetina/metabolismo , Animales , Humanos
8.
FASEB J ; 29(5): 1890-900, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25630969

RESUMEN

Erythropoietin (EPO) primarily regulates red blood cell formation, and EPO serum levels are increased on hypoxic stress (e.g., anemia and altitude). In addition to anemia, recent discoveries suggest new therapeutic indications for EPO, unrelated to erythropoiesis. We investigated the skeletal role of EPO using several models of overexpression (Tg6 mice) and EPO administration (intermittent/continuous, high/low doses) in adult C57Bl6 female mice. Using microcomputed tomography, histology, and serum markers, we found that EPO induced a 32%-61% trabecular bone loss caused by increased bone resorption (+60%-88% osteoclast number) and reduced bone formation rate (-19 to -74%; P < 0.05 throughout). EPO targeted the monocytic lineage by increasing the number of bone monocytes/macrophages, preosteoclasts, and mature osteoclasts. In contrast to the attenuated bone formation in vivo, EPO treatment in vitro did not inhibit osteoblast differentiation and activity, suggesting an indirect effect of EPO on osteoblasts. However, EPO had a direct effect on preosteoclasts by stimulating osteoclastogenesis in isolated cultures (+60%) via the Jak2 and PI3K pathways. In summary, our findings demonstrate that EPO negatively regulates bone mass and thus bears significant clinical implications for the potential management of patients with endogenously or therapeutically elevated EPO levels.


Asunto(s)
Resorción Ósea/etiología , Eritropoyetina/fisiología , Osteoclastos/citología , Receptores de Eritropoyetina/metabolismo , Animales , Apoptosis , Western Blotting , Resorción Ósea/metabolismo , Resorción Ósea/patología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Osteoclastos/metabolismo , Osteogénesis/fisiología , Ligando RANK/genética , Ligando RANK/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Eritropoyetina/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Microtomografía por Rayos X
9.
Br J Haematol ; 168(3): 429-42, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25283956

RESUMEN

Recombinant human erythropoietin (rHuEPO) is an effective treatment for anaemia but concerns that it causes disease progression in cancer patients by activation of EPO receptors (EPOR) in tumour tissue have been controversial and have restricted its clinical use. Initial clinical studies were flawed because they used polyclonal antibodies, later shown to lack specificity for EPOR. Moreover, multiple isoforms of EPOR caused by differential splicing have been reported in cancer cell lines at the mRNA level but investigations of these variants and their potential impact on tumour progression, have been hampered by lack of suitable antibodies. The EpoCan consortium seeks to promote improved pathological testing of EPOR, leading to safer clinical use of rHuEPO, by producing well characterized EPOR antibodies. Using novel genetic and traditional peptide immunization protocols, we have produced mouse and rat monoclonal antibodies, and show that several of these specifically recognize EPOR by Western blot, immunoprecipitation, immunofluorescence, flow cytometry and immunohistochemistry in cell lines and clinical material. Widespread availability of these antibodies should enable the research community to gain a better understanding of the role of EPOR in cancer, and eventually to distinguish patients who can be treated safely by rHuEPO from those at increased risk from treatment.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Proteínas de Neoplasias/inmunología , Receptores de Eritropoyetina/inmunología , Secuencia de Aminoácidos , Animales , Técnicas de Química Sintética/métodos , Citometría de Flujo/métodos , Técnica del Anticuerpo Fluorescente , Silenciador del Gen , Humanos , Inmunoprecipitación , Ratones , Datos de Secuencia Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ratas , Receptores de Eritropoyetina/genética , Receptores de Eritropoyetina/metabolismo , Medición de Riesgo/métodos , Terminología como Asunto , Células Tumorales Cultivadas/metabolismo
10.
Hum Mutat ; 35(1): 15-26, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24115288

RESUMEN

Congenital erythrocytosis (CE), or congenital polycythemia, represents a rare and heterogeneous clinical entity. It is caused by deregulated red blood cell production where erythrocyte overproduction results in elevated hemoglobin and hematocrit levels. Primary congenital familial erythrocytosis is associated with low erythropoietin (Epo) levels and results from mutations in the Epo receptor gene (EPOR). Secondary CE arises from conditions causing tissue hypoxia and results in increased Epo production. These include hemoglobin variants with increased affinity for oxygen (HBB, HBA mutations), decreased production of 2,3-bisphosphoglycerate due to BPGM mutations, or mutations in the genes involved in the hypoxia sensing pathway (VHL, EPAS1, and EGLN1). Depending on the affected gene, CE can be inherited either in an autosomal dominant or recessive mode, with sporadic cases arising de novo. Despite recent important discoveries in the molecular pathogenesis of CE, the molecular causes remain to be identified in about 70% of the patients. With the objective of collecting all the published and unpublished cases of CE the COST action MPN&MPNr-Euronet developed a comprehensive Internet-based database focusing on the registration of clinical history, hematological, biochemical, and molecular data (http://www.erythrocytosis.org/). In addition, unreported mutations are also curated in the corresponding Leiden Open Variation Database.


Asunto(s)
Bases de Datos Genéticas , Predisposición Genética a la Enfermedad , Mutación , Policitemia/congénito , Receptores de Eritropoyetina/genética , Hipoxia de la Célula/genética , Eritropoyetina/metabolismo , Humanos , Internet , Policitemia/genética , Policitemia/metabolismo , Transducción de Señal/genética
11.
Br J Haematol ; 165(4): 519-28, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24533580

RESUMEN

Primary familial and congenital polycythaemia (PFCP) is a disease characterized by increased red blood cell mass, and can be associated with mutations in the intracellular region of the erythropoietin (EPO) receptor (EPOR). Here we explore the mechanisms by which EPOR mutations induce PFCP, using an experimental system based on chimeric receptors between epidermal growth factor receptor (EGFR) and EPOR. The design of the chimeras enabled EPOR signalling to be triggered by EGF binding. Using this system we analysed three novel EPOR mutations discovered in PFCP patients: a deletion mutation (Del1377-1411), a nonsense mutation (C1370A) and a missense mutation (G1445A). Three different chimeras, bearing these mutations in the cytosolic, EPOR region were generated; Hence, the differences in the chimera-related effects are specifically attributed to the mutations. The results show that the different mutations affect various aspects related to the signalling and metabolism of the chimeric receptors. These include slower degradation rate, higher levels of glycan-mature chimeric receptors, increased sensitivity to low levels of EGF (replacing EPO in this system) and extended signalling cascades. This study provides a novel experimental system to study polycythaemia-inducing mutations in the EPOR, and sheds new light on underlying mechanisms of EPOR over-activation in PFCP patients.


Asunto(s)
Policitemia/congénito , Receptores de Eritropoyetina/genética , Línea Celular , Membrana Celular/metabolismo , Codón sin Sentido , Análisis Mutacional de ADN , Receptores ErbB/genética , Glicosilación , Humanos , Técnicas In Vitro , Janus Quinasa 2/metabolismo , Sistema de Señalización de MAP Quinasas , Mutación Missense , Policitemia/genética , Polisacáridos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Receptores de Eritropoyetina/química , Receptores de Eritropoyetina/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Factor de Transcripción STAT5/fisiología , Eliminación de Secuencia , Transducción de Señal/genética , Relación Estructura-Actividad , Transfección
12.
Biochem Biophys Res Commun ; 445(1): 163-9, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24502950

RESUMEN

The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα(+)) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Eritropoyetina/farmacología , Receptor alfa de Estrógeno/metabolismo , Receptores de Eritropoyetina/metabolismo , Western Blotting , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Eritropoyetina/genética , Receptor alfa de Estrógeno/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Microscopía Confocal , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Receptores de Eritropoyetina/genética , Proteínas Recombinantes/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos
13.
Mar Drugs ; 11(11): 4487-509, 2013 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-24284425

RESUMEN

Derivatives of salarin A, salarin C and tulearin A, three new cytotoxic sponge derived nitrogenous macrolides, were prepared and bio-evaluated as inhibitors of K562 leukemia cells. Interesting preliminary SAR (structure activity relationship) information was obtained from the products. The most sensitive functionalities were the 16,17-vinyl epoxide in both salarins, the triacylamino group in salarin A and the oxazole in salarin C (less sensitive). Regioselectivity of reactions was also found for tulearin A.


Asunto(s)
Macrólidos/química , Poríferos/química , Animales , Línea Celular Tumoral , Humanos , Células K562 , Macrólidos/farmacología , Relación Estructura-Actividad
14.
Cells ; 12(13)2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37443738

RESUMEN

Erythrocyte biogenesis needs to be tightly regulated to secure oxygen transport and control plasma viscosity. The cytokine erythropoietin (Epo) governs erythropoiesis by promoting cell proliferation, differentiation, and survival of erythroid precursor cells. Erythroid differentiation is associated with an accumulation of the cyclin-dependent kinase inhibitor p27Kip1, but the regulation and role of p27 during erythroid proliferation remain largely unknown. We observed that p27 can bind to the erythropoietin receptor (EpoR). Activation of EpoR leads to immediate Jak2-dependent p27 phosphorylation of tyrosine residue 88 (Y88). This modification is known to impair its CDK-inhibitory activity and convert the inhibitor into an activator and assembly factor of CDK4,6. To investigate the physiological role of p27-Y88 phosphorylation in erythropoiesis, we analyzed p27Y88F/Y88F knock-in mice, where tyrosine-88 was mutated to phenylalanine. We observed lower red blood cell counts, lower hematocrit levels, and a reduced capacity for colony outgrowth of CFU-Es (colony-forming unit-erythroid), indicating impaired cell proliferation of early erythroid progenitors. Compensatory mechanisms of reduced p27 and increased Epo expression protect from stronger dysregulation of erythropoiesis. These observations suggest that p27-Y88 phosphorylation by EpoR pathway activation plays an important role in the stimulation of erythroid progenitor proliferation during the early stages of erythropoiesis.


Asunto(s)
Eritropoyetina , Receptores de Eritropoyetina , Ratones , Animales , Receptores de Eritropoyetina/metabolismo , Fosforilación , Tirosina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Transducción de Señal , Eritropoyetina/metabolismo , Proliferación Celular
15.
Invest New Drugs ; 30(1): 98-104, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20734109

RESUMEN

The continuous emergence of new diseases and the development of drug-resistant cancers necessitate the development of new drugs with novel mechanisms of action. The richest marine source of natural anti-cancer products has been soft-bodied organisms that lack physical defenses against their predators, and hence rely on chemical defense mechanisms using cytotoxic secondary metabolites. Bio-guided (brine shrimp test) separation of CHCl(3)-CH(3)OH (1:1) extract from the Madagascar Fascaplysinopsis sp. sponge provided several new compounds. Here we focused on the biological activity of a panel of novel natural compounds, salarins A-J. Of these, salarin C was the most potent inhibitor of proliferation, as demonstrated on the K562 leukemia cell line. Salarin C-treated K562 cells underwent apoptotic death as monitored by cell-cycle analysis, annexin V/propidium iodide staining, cleavage of poly-ADP-ribose polymerase (PARP) and caspase 3, and caspase 9 levels. The experimental approach described herein is an essential step towards identifying the cellular pathway(s) affected by salarin C and producing potent synthetic derivatives of salarin C with potential future uses as basic research tools and/or drugs and drug leads.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Macrólidos/farmacología , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Células K562 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Factores de Tiempo
16.
Biochem J ; 435(2): 509-18, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21291419

RESUMEN

Lysine residues are key residues in many cellular processes, in part due to their ability to accept a wide variety of post-translational modifications. In the present study, we identify the EPO-R [EPO (erythropoietin) receptor] cytosolic lysine residues as enhancers of receptor function. EPO-R drives survival, proliferation and differentiation of erythroid progenitor cells via binding of its ligand EPO. We mutated the five EPO-R cytosolic lysine residues to arginine residues (5KR EPO-R), eliminating putative lysine-dependent modifications. Overexpressed 5KR EPO-R displayed impaired ubiquitination and improved stability compared with wt (wild-type) EPO-R. Unexpectedly, fusion proteins consisting of VSVGtsO45 (vesicular stomatitis virus glycoprotein temperature-sensitive folding mutant) with wt or 5KR EPO-R cytosolic domains demonstrated delayed glycan maturation kinetics upon substitution of the lysine residues. Moreover, VSVG-wt EPO-R, but not VSVG-5KR EPO-R, displayed endoplasmic reticulum-associated ubiquitination. Despite similar cell-surface EPO-binding levels of both receptors and the lack of EPO-induced ubiquitination by 5KR EPO-R, the lysine-less mutant produced weaker receptor activation and signalling than the wt receptor. We thus propose that EPO-R cytosolic lysine residues enhance receptor function, most probably through ubiquitination and/or other post-translational modifications.


Asunto(s)
Lisina/fisiología , Receptores de Eritropoyetina/agonistas , Receptores de Eritropoyetina/metabolismo , Animales , Células Cultivadas , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Ratones , Modelos Biológicos , Proteínas Mutantes/metabolismo , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología , Transporte de Proteínas/genética , Receptores de Eritropoyetina/genética , Ubiquitinación
17.
Front Oncol ; 12: 976961, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36052260

RESUMEN

Erythropoietin receptor (EPOR) is widely expressed in healthy and malignant tissues. In certain malignancies, EPOR stimulates tumor growth. In healthy tissues, EPOR controls processes other than erythropoiesis, including mitochondrial metabolism. We hypothesized that EPOR also controls the mitochondrial metabolism in cancer cells. To test this hypothesis, we generated EPOR-knockdown cancer cells to grow tumor xenografts in mice and analyzed tumor cellular respiration via high-resolution respirometry. Furthermore, we analyzed cellular respiratory control, mitochondrial content, and regulators of mitochondrial biogenesis in vivo and in vitro in different cancer cell lines. Our results show that EPOR controls tumor growth and mitochondrial biogenesis in tumors by controlling the levels of both, pAKT and inducible NO synthase (iNOS). Furthermore, we observed that the expression of EPOR is associated with the expression of the mitochondrial marker VDAC1 in tissue arrays of lung cancer patients, suggesting that EPOR indeed helps to regulate mitochondrial biogenesis in tumors of cancer patients. Thus, our data imply that EPOR not only stimulates tumor growth but also regulates tumor metabolism and is a target for direct intervention against progression.

18.
Biochem J ; 427(2): 305-12, 2010 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-20136632

RESUMEN

EPO (erythropoietin), the major hormone regulating erythropoiesis, functions via activation of its cell-surface receptor (EPO-R) present on erythroid progenitor cells. One of the most striking properties of EPO-R is its low expression on the cell surface, as opposed to its high intracellular levels. The low cell-surface expression of EPO-R may thus limit the efficacy of EPO that is routinely used to treat primary and secondary anaemia. In a recent study [Nahari, Barzilay, Hirschberg and Neumann (2008) Biochem. J. 410, 409-416] we have shown that insertion of an NPVY sequence into the intracellular domain of EPO-R increases its cell-surface expression. In the present study we demonstrate that this NPVY EPO-R insert has a selective effect on EPO-mediated downstream signalling in Ba/F3 cells expressing this receptor (NPVY-EPO-R). This is monitored by increased phosphorylation of the NPVY-EPO-R (on Tyr479), Akt, JAK2 (Janus kinase 2) and ERK1/2 (extracellular-signal-regulated kinase 1/2), but not STAT5 (signal transducer and activator of transcription 5), as compared with cells expressing wild-type EPO-R. This enhanced signalling is reflected in augmented proliferation at low EPO levels (0.05 units/ml) and protection against etoposide-induced apoptosis. Increased cell-surface levels of NPVY-EPO-R are most probably not sufficient to mediate these effects as the A234E-EPO-R mutant that is expressed at high cell-surface levels does not confer an augmented response to EPO. Taken together, we demonstrate that insertion of an NPVY sequence into the cytosolic domain of the EPO-R confers not only improved maturation, but also selectively affects EPO-mediated signalling resulting in an improved responsiveness to EPO reflected in cell proliferation and protection against apoptosis.


Asunto(s)
Eritropoyetina/metabolismo , Receptores de Eritropoyetina/química , Transducción de Señal , Secuencia de Aminoácidos , Animales , Línea Celular , Proliferación Celular , Citosol , Humanos , Ratones , Mutación , Fosforilación , Receptores de Eritropoyetina/análisis , Receptores de Eritropoyetina/genética , Regulación hacia Arriba
19.
Bone Res ; 9(1): 42, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34518518

RESUMEN

High erythropoietin (Epo) levels are detrimental to bone health in adult organisms. Adult mice receiving high doses of Epo lose bone mass due to suppressed bone formation and increased bone resorption. In humans, high serum Epo levels are linked to fractures in elderly men. Our earlier studies indicated that Epo modulates osteoblast activity; however, direct evidence that Epo acts via its receptor (EpoR) on osteoblasts in vivo is still missing. Here, we created mice lacking EpoR in osteoprogenitor cells to specifically address this gap. Deletion of EpoR in osteoprogenitors (EpoR:Osx-cre, cKO) starting at 5 weeks of age did not alter red blood cell parameters but increased vertebral bone volume by 25% in 12-week-old female mice. This was associated with low bone turnover. Histological (osteoblast number, bone formation rate) and serum (P1NP, osteocalcin) bone formation parameters were all reduced, as were the number of osteoclasts and TRAP serum level. Differentiation of osteoblast precursors isolated from cKO versus control mice resulted in lower expression of osteoblast marker genes including Runx2, Alp, and Col1a1 on day 21, whereas the mineralization capacity was similar. Moreover, the RANKL/OPG ratio, which determines the osteoclast-supporting potential of osteoblasts, was substantially decreased by 50%. Similarly, coculturing cKO osteoblasts with control or cKO osteoclast precursors produced significantly fewer osteoclasts than coculture with control osteoblasts. Finally, exposing female mice to Epo pumps (10 U·d-1) for 4 weeks resulted in trabecular bone loss (-25%) and increased osteoclast numbers (1.7-fold) in control mice only, not in cKO mice. Our data show that EpoR in osteoprogenitors is essential in regulating osteoblast function and osteoblast-mediated osteoclastogenesis via the RANKL/OPG axis. Thus, osteogenic Epo/EpoR signaling controls bone mass maintenance and contributes to Epo-induced bone loss.

20.
Front Cell Dev Biol ; 9: 674710, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113621

RESUMEN

In vitro osteoclastogenesis is a central assay in bone biology to study the effect of genetic and pharmacologic cues on the differentiation of bone resorbing osteoclasts. To date, identification of TRAP+ multinucleated cells and measurements of osteoclast number and surface rely on a manual tracing requiring specially trained lab personnel. This task is tedious, time-consuming, and prone to operator bias. Here, we propose to replace this laborious manual task with a completely automatic process using algorithms developed for computer vision. To this end, we manually annotated full cultures by contouring each cell, and trained a machine learning algorithm to detect and classify cells into preosteoclast (TRAP+ cells with 1-2 nuclei), osteoclast type I (cells with more than 3 nuclei and less than 15 nuclei), and osteoclast type II (cells with more than 15 nuclei). The training usually requires thousands of annotated samples and we developed an approach to minimize this requirement. Our novel strategy was to train the algorithm by working at "patch-level" instead of on the full culture, thus amplifying by >20-fold the number of patches to train on. To assess the accuracy of our algorithm, we asked whether our model measures osteoclast number and area at least as well as any two trained human annotators. The results indicated that for osteoclast type I cells, our new model achieves a Pearson correlation (r) of 0.916 to 0.951 with human annotators in the estimation of osteoclast number, and 0.773 to 0.879 for estimating the osteoclast area. Because the correlation between 3 different trained annotators ranged between 0.948 and 0.958 for the cell count and between 0.915 and 0.936 for the area, we can conclude that our trained model is in good agreement with trained lab personnel, with a correlation that is similar to inter-annotator correlation. Automation of osteoclast culture quantification is a useful labor-saving and unbiased technique, and we suggest that a similar machine-learning approach may prove beneficial for other morphometrical analyses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA