Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Virol J ; 14(1): 22, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28173821

RESUMEN

BACKGROUND: Influenza A virus is controlled with yearly vaccination while emerging global pandemics are kept at bay with antiviral medications. Unfortunately, influenza A viruses have emerged resistance to approved influenza antivirals. Accordingly, there is an urgent need for novel antivirals to combat emerging influenza A viruses resistant to current treatments. Conserved viral proteins are ideal targets because conserved protein domains are present in most, if not all, influenza subtypes, and are presumed less prone to evolve viable resistant versions. The threat of an antiviral resistant influenza pandemic justifies our study to identify and characterize antiviral targets within influenza proteins that are highly conserved. Influenza A nucleoprotein (NP) is highly conserved and plays essential roles throughout the viral lifecycle, including viral RNA synthesis. METHODS: Using NP crystal structure, we targeted accessible amino acids for substitution. To characterize the NP proteins, reconstituted viral ribonucleoproteins (vRNPs) were expressed in 293 T cells, RNA was isolated, and reverse transcription - quantitative PCR (RT-qPCR) was employed to assess viral RNA expressed from reconstituted vRNPs. Location was confirmed using cellular fractionation and western blot, along with observation of NP-GFP fusion proteins. Nucleic acid binding, oligomerization, and vRNP formation, were each assessed with native gel electrophoresis. RESULTS: Here we report characterization of an accessible and conserved five amino acid region within the NP body domain that plays a redundant but essential role in viral RNA synthesis. Our data demonstrate substitutions in this domain did not alter NP localization, oligomerization, or ability to bind nucleic acids, yet resulted in a defect in viral RNA expression. To define this region further, single and double amino acid substitutions were constructed and investigated. All NP single substitutions were functional, suggesting redundancy, yet different combinations of two amino acid substitutions resulted in a significant defect in RNA expression, confirming these accessible amino acids in the NP body domain play an important role in viral RNA synthesis. CONCLUSIONS: The identified conserved and accessible NP body domain represents a viable antiviral target to counter influenza replication and this research will contribute to the well-informed design of novel therapies to combat emerging influenza viruses.


Asunto(s)
Antivirales/metabolismo , Virus de la Influenza A/metabolismo , Gripe Humana/metabolismo , ARN Viral/biosíntesis , Proteínas de Unión al ARN/metabolismo , Proteínas del Núcleo Viral/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Antivirales/farmacología , Regulación Viral de la Expresión Génica/fisiología , Células HEK293 , Humanos , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/genética , Gripe Humana/genética , Mutación , Proteínas de la Nucleocápside , ARN Viral/efectos de los fármacos , ARN Viral/genética , Proteínas de Unión al ARN/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Relación Estructura-Actividad , Transfección , Proteínas del Núcleo Viral/genética , Proteínas Virales/efectos de los fármacos , Proteínas Virales/genética , Replicación Viral
2.
Virol J ; 11: 167, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25228366

RESUMEN

Emerging antiviral resistant strains of influenza A virus are greatly limiting the therapies available to stop aggressive infections. Genome changes that confer resistance to the two classes of approved antivirals have been identified in circulating influenza A viruses. It is only a matter of time before the currently approved influenza A antivirals are rendered ineffective, emphasizing the need for additional influenza antiviral therapies. This review highlights the current state of antiviral resistance in circulating and highly pathogenic influenza A viruses and explores potential antiviral targets within the proteins of the influenza A virus ribonucleoprotein (vRNP) complex, drawing attention to the viral protein activities and interactions that play an indispensable role in the influenza life cycle. Investigation of small molecule inhibition, accelerated by the use of crystal structures of vRNP proteins, has provided important information about viral protein domains and interactions, and has revealed many promising antiviral drug candidates discussed in this review.


Asunto(s)
Antivirales/farmacología , Regulación Viral de la Expresión Génica/efectos de los fármacos , Virus de la Influenza A/efectos de los fármacos , Ribonucleoproteínas/metabolismo , Enfermedades Transmisibles Emergentes , Humanos , Proteínas Virales/genética , Proteínas Virales/metabolismo
3.
Virol J ; 11: 155, 2014 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-25174360

RESUMEN

BACKGROUND: The influenza RNA dependent RNA polymerase synthesizes viral RNA in the nucleus as functional viral ribonucleoprotein (vRNP) complexes with RNA and nucleoprotein (NP). The N-terminus of NP contains an unconventional nuclear localization signal (NLS) important for initial vRNP nuclear localization but which also interacts with various host factors. METHODS: To study the role of the N-terminus of NP aside from NLS function, we generated an N-terminal NP deletion mutant, del20NLS-NP, encoding the conventional SV40 T-antigen NLS in place of the first 20 amino acids of NP. We characterized expression, location, and activity of del20NLS-NP compared to wild type NP using reconstituted vRNP assays, cellular fractionation, Western blotting, and reverse transcription-PCR. We assessed NP nucleotide binding with gel-shift assays and analyzed NP complexes using 1D blue native gel electrophoresis. RESULTS: del20NLS-NP is expressed, localized in the nucleus and cytoplasm, and maintains ability to bind nucleic acids. Despite this, del20NLS-NP exhibits a defect in viral RNA expression exacerbated by increasing vRNA template length. We find diminished del20NLS-NP high molecular weight complexes in protein extracts; evidence the defect is with functional vRNP formation. Interestingly, the shortest template, NS vRNA, exhibits a limited defect. However, this is not due to short template size, but rather activity of the NS protein(s). Expression of NS1 rescues the gene expression defect primarily at the protein level, a finding consistent with the known role of NS1 as a viral mRNA translational enhancer. NS1 mutant analysis confirms NS1-RNA binding is not required for the translational enhancement and reveals the NS1-CPSF30 interaction surface is essential. CONCLUSIONS: del20NLS-NP is a nuclear localized NP mutant able to bind nucleic acids but inefficient for assembly of functional vRNPs inside the host cell. Our results add to growing evidence the N-terminus of NP plays important roles aside from vRNP nuclear localization. We demonstrate the utility of this partially functional NP mutant to characterize the influence of additional proteins on viral gene expression. Our studies reveal the NS1-CPSF30 interaction surface is required for the ability of NS1 to enhance viral protein translation, supporting a function for this NS1 domain in the cytoplasm.


Asunto(s)
Ribonucleoproteínas/metabolismo , Proteínas del Núcleo Viral/metabolismo , Regulación Viral de la Expresión Génica/fisiología , Células HEK293 , Humanos , Mutación , Proteínas de la Nucleocápside , Plásmidos , Ribonucleoproteínas/genética , Proteínas del Núcleo Viral/genética
4.
Virol J ; 11: 154, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25168591

RESUMEN

BACKGROUND: Influenza is a segmented negative strand RNA virus. Each RNA segment is encapsulated by influenza nucleoprotein and bound by the viral RNA dependent RNA polymerase (RdRP) to form viral ribonucleoproteins responsible for RNA synthesis in the nucleus of the host cell. Influenza transcription results in spliced mRNAs (M2 and NS2), intron-containing mRNAs (M1 and NS1), and intron-less mRNAs (HA, NA, NP, PB1, PB2, and PA), all of which undergo nuclear export into the cytoplasm for translation. Most cellular mRNA nuclear export is Nxf1-mediated, while select mRNAs utilize Crm1. METHODS: Here we inhibited Nxf1 and Crm1 nuclear export prior to infection with influenza A/Udorn/307/1972(H3N2) virus and analyzed influenza intron-less mRNAs using cellular fractionation and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We examined direct interaction between Nxf1 and influenza intron-less mRNAs using immuno purification of Nxf1 and RT-PCR of associated RNA. RESULTS: Inhibition of Nxf1 resulted in less influenza intron-less mRNA export into the cytoplasm for HA and NA influenza mRNAs in both human embryonic kidney cell line (293 T) and human lung adenocarcinoma epithelial cell line (A549). However, in 293 T cells no change was observed for mRNAs encoding the components of the viral ribonucleoproteins; NP, PA, PB1, and PB2, while in A549 cells, only PA, PB1, and PB2 mRNAs, encoding the RdRP, remained unaffected; NP mRNA was reduced in the cytoplasm. In A549 cells NP, NA, HA, mRNAs were found associated with Nxf1 but PA, PB1, and PB2 mRNAs were not. Crm1 inhibition also resulted in no significant difference in PA, PB1, and PB2 mRNA nuclear export. CONCLUSIONS: These results further confirm Nxf1-mediated nuclear export is functional during the influenza life cycle and hijacked for select influenza mRNA nuclear export. We reveal a cell type difference for Nxf1-mediated nuclear export of influenza NP mRNA, a reminder that cell type can influence molecular mechanisms. Importantly, we conclude that in both A549 and 293 T cells, PA, PB1, and PB2 mRNA nuclear export is Nxf1 and Crm1 independent. Our data support the hypothesis that PA, PB1, and PB2 mRNAs, encoding the influenza RdRP, utilize atypical mRNA nuclear export.


Asunto(s)
Subtipo H3N2 del Virus de la Influenza A/metabolismo , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Transporte Activo de Núcleo Celular , Antibióticos Antineoplásicos/farmacología , Línea Celular , Ácidos Grasos Insaturados/farmacología , Regulación de la Expresión Génica , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , Carioferinas/antagonistas & inhibidores , Carioferinas/genética , Carioferinas/metabolismo , Proteínas de Transporte Nucleocitoplasmático/antagonistas & inhibidores , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , ARN Mensajero/genética , ARN Viral/genética , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Replicación Viral , Proteína Exportina 1
5.
Viruses ; 14(3)2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35336969

RESUMEN

Novel coronaviruses emerged as zoonotic outbreaks in humans in 2003 (SARS), 2012 (MERS), and notably in 2019 (SARS2), which resulted in the COVID-19 pandemic, causing worldwide health and economic disaster. Vaccines provide the best protection against disease but cannot be developed and engineered quickly enough to prevent emerging viruses, zoonotic outbreaks, and pandemics. Antivirals are the best first line of therapeutic defense against novel emerging viruses. Coronaviruses are plus sense, single stranded, RNA genome viruses that undergo frequent genetic mutation and recombination, allowing for the emergence of novel coronavirus strains and variants. The molecular life cycle of the coronavirus family offers many conserved activities to be exploited as targets for antivirals. Here, we review the molecular life cycle of coronaviruses and consider antiviral therapies, approved and under development, that target the conserved activities of coronaviruses. To identify additional targets to inhibit emerging coronaviruses, we carried out in silico sequence and structure analysis of coronavirus proteins isolated from bat and human hosts. We highlight conserved and accessible viral protein domains and residues as possible targets for the development of viral inhibitors. Devising multiple antiviral therapies that target conserved viral features to be used in combination is the best first line of therapeutic defense to prevent emerging viruses from developing into outbreaks and pandemics.


Asunto(s)
COVID-19 , Pandemias , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos
6.
J Virol ; 83(1): 29-36, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18945782

RESUMEN

The influenza A virus polymerase transcribes and replicates the eight virion RNA (vRNA) segments. Transcription is initiated with capped RNA primers excised from cellular pre-mRNAs by the intrinsic endonuclease of the viral polymerase. Viral RNA replication occurs in two steps: first a full-length copy of vRNA is made, termed cRNA, and then this cRNA is copied to produce vRNA. The synthesis of cRNAs and vRNAs is initiated without a primer, in contrast to the initiation of viral mRNA synthesis, and requires the viral nucleocapsid protein (NP). The mechanism of unprimed viral RNA replication is poorly understood. To elucidate this mechanism, we used purified recombinant influenza virus polymerase complexes and NP to establish an in vitro system that catalyzes the unprimed synthesis of cRNA and vRNA using 50-nucleotide-long RNA templates. The purified viral polymerase and NP are sufficient for catalyzing this RNA synthesis without a primer, suggesting that host cell factors are not required. We used this purified in vitro replication system to demonstrate that the RNA-binding activity of NP is not required for the unprimed synthesis of cRNA and vRNA. This result rules out two models that postulate that the RNA-binding activity of NP mediates the switch from capped RNA-primed transcription to unprimed viral RNA replication. Because we showed that NP lacking RNA-binding activity binds directly to the viral polymerase, it is likely that a direct interaction between NP and the viral polymerase results in a modification of the polymerase in favor of unprimed initiation.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/fisiología , ARN Viral/biosíntesis , Proteínas de Unión al ARN/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas del Núcleo Viral/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Proteínas de la Nucleocápside , Unión Proteica , Proteínas de Unión al ARN/aislamiento & purificación , ARN Polimerasa Dependiente del ARN/aislamiento & purificación , Proteínas del Núcleo Viral/aislamiento & purificación , Proteínas Virales/aislamiento & purificación
7.
Mol Cell Biol ; 22(5): 1607-14, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11839825

RESUMEN

Transcription of the CLN3 G(1) cyclin in Saccharomyces cerevisiae is positively regulated by glucose in a process that involves a set of DNA elements with the sequence AAGAAAAA (A(2)GA(5)). To identify proteins that interact with these elements, we used a 1-hybrid approach, which yielded a nuclear zinc finger protein previously identified as Azf1. Gel shift and chromatin immunoprecipitation experiments show that Azf1 binds to the A(2)GA(5) CLN3 regulatory sequences in vitro and in vivo, thus identifying a transcriptional regulatory protein for CLN3 and a DNA sequence target for Azf1. We show that glucose-induced expression of a reporter gene driven by the A(2)GA(5) CLN3 regulatory sequences is dependent upon the presence of AZF1. Furthermore, deletion of AZF1 markedly reduces the transcriptional induction of CLN3 by glucose. In addition, Azf1 can induce reporter expression in a glucose-specific manner when artificially tethered to a promoter via the DNA-binding domain from Gal4. We conclude that AZF1 is a glucose-dependent transcription factor that interacts with the CLN3 A(2)GA(5) repeats to play a positive role in the regulation of CLN3 mRNA expression by glucose.


Asunto(s)
Proteínas Portadoras/metabolismo , Ciclinas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/genética , Glucosa/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Factores de Transcripción , Secuencia de Bases , Sitios de Unión , Ciclinas/biosíntesis , Proteínas Fúngicas/biosíntesis , Regulación Fúngica de la Expresión Génica , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Unión Proteica , Secuencias Repetitivas de Ácidos Nucleicos , Transcripción Genética
8.
Eukaryot Cell ; 2(1): 143-9, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12582131

RESUMEN

Nutrient-limited Saccharomyces cerevisiae cells rapidly resume proliferative growth when transferred into glucose medium. This is preceded by a rapid increase in CLN3, BCK2, and CDC28 mRNAs encoding cell cycle regulatory proteins that promote progress through Start. We have tested the ability of mutations in known glucose signaling pathways to block glucose induction of CLN3, BCK2, and CDC28. We find that loss of the Snf3 and Rgt2 glucose sensors does not block glucose induction, nor does deletion of HXK2, encoding the hexokinase isoenzyme involved in glucose repression signaling. Rapamycin blockade of the Tor nutrient sensing pathway does not block the glucose response. Addition of 2-deoxy glucose to the medium will not substitute for glucose. These results indicate that glucose metabolism generates the signal required for induction of CLN3, BCK2, and CDC28. In support of this conclusion, we find that addition of iodoacetate, an inhibitor of the glyceraldehyde-3-phosphate dehydrogenase step in yeast glycolysis, strongly downregulates the levels CLN3, BCK2, and CDC28 mRNAs. Furthermore, mutations in PFK1 and PFK2, which encode phosphofructokinase isoforms, inhibit glucose induction of CLN3, BCK2, and CDC28. These results indicate a link between the rate of glycolysis and the expression of genes that are critical for passage through G(1).


Asunto(s)
Proteínas de Ciclo Celular/biosíntesis , Ciclo Celular/genética , Metabolismo Energético/genética , Regulación Fúngica de la Expresión Génica/genética , Glucosa/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/biosíntesis , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Ciclinas/biosíntesis , Ciclinas/genética , Inhibidores Enzimáticos/farmacología , Glucólisis/efectos de los fármacos , Glucólisis/genética , Péptidos y Proteínas de Señalización Intracelular , Mutación/genética , Fosfofructoquinasa-1/genética , Fosfofructoquinasa-2/genética , Fosfoproteínas/biosíntesis , Fosfoproteínas/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Regulación hacia Arriba/genética
9.
Proc Natl Acad Sci U S A ; 100(18): 10275-80, 2003 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-12937340

RESUMEN

Saccharomyces cerevisiae cells reproduce by budding to yield a mother cell and a smaller daughter cell. Although both mother and daughter begin G1 simultaneously, the mother cell progresses through G1 more rapidly. Daughter cell G1 delay has long been thought to be due to a requirement for attaining a certain critical cell size before passing the commitment point in the cell cycle known as START. We present an alternative model in which the daughter cell-specific Ace2 transcription factor delays G1 in daughter cells. Deletion of ACE2 produces daughter cells that proceed through G1 at the same rate as mother cells, whereas a mutant Ace2 protein that is not restricted to daughter cells delays G1 equally in both mothers and daughters. The differential in G1 length between mothers and daughters requires the Cln3 G1 cyclin, and CLN3-GFP reporter expression is reduced in daughters in an ACE2-dependent manner. Specific daughter delay elements in the CLN3 promoter are required for normal daughter G1 delay, and these elements bind to an unidentified 127-kDa protein. This DNA-binding activity is enhanced by deletion of ACE2. These results support a model in which daughter cell G1 delay is determined not by cell size but by an intrinsic property of the daughter cell generated by asymmetric cell division.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Fase G1/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Factores de Transcripción/fisiología , Secuencia de Bases , Ciclo Celular , Tamaño de la Célula , Ciclinas/genética , Ciclinas/fisiología , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA