Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 171(2): 346-357.e12, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28919078

RESUMEN

Newly synthesized proteins engage molecular chaperones that assist folding. Their progress is monitored by quality control systems that target folding errors for degradation. Paradoxically, chaperones that promote folding also direct unfolded polypeptides for degradation. Hence, a mechanism was previously hypothesized that prevents the degradation of actively folding polypeptides. In this study, we show that a conserved endoplasmic reticulum (ER) membrane protein complex, consisting of Slp1 and Emp65 proteins, performs this function in the ER lumen. The complex binds unfolded proteins and protects them from degradation during folding. In its absence, approximately 20%-30% of newly synthesized proteins that could otherwise fold are degraded. Although the Slp1-Emp65 complex hosts a broad range of clients, it is specific for soluble proteins. Taken together, these studies demonstrate the vulnerability of newly translated, actively folding polypeptides and the discovery of a new proteostasis functional class we term "guardian" that protects them from degradation.


Asunto(s)
Retículo Endoplásmico/metabolismo , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Degradación Asociada con el Retículo Endoplásmico , Glicosilación , Ratones , Chaperonas Moleculares/metabolismo , Proteolisis , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Transporte Vesicular/química
2.
Nat Rev Mol Cell Biol ; 16(12): 742-52, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26465718

RESUMEN

Membrane-bound and soluble proteins of the secretory pathway are commonly glycosylated in the endoplasmic reticulum. These adducts have many biological functions, including, notably, their contribution to the maturation of glycoproteins. N-linked glycans are of oligomeric structure, forming configurations that provide blueprints to precisely instruct the folding of protein substrates and the quality control systems that scrutinize it. O-linked mannoses are simpler in structure and were recently found to have distinct functions in protein quality control that do not require the complex structure of N-linked glycans. Together, recent studies reveal the breadth and sophistication of the roles of these glycan-directed modifications in protein biogenesis.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glicoproteínas/química , Polisacáridos/química , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Animales , Glicosilación , Humanos , Estructura Terciaria de Proteína , Schizosaccharomyces/metabolismo
3.
BMC Biol ; 18(1): 117, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32900371

RESUMEN

BACKGROUND: The protein homeostasis (proteostasis) network maintains balanced protein synthesis, folding, transport, and degradation within a cell. Failure to maintain proteostasis is associated with aging and disease, leading to concerted efforts to study how the network responds to various proteotoxic stresses. This is often accomplished using ectopic overexpression of well-characterized, model misfolded protein substrates. However, how cells tolerate large-scale, diverse burden to the proteostasis network is not understood. Aneuploidy, the state of imbalanced chromosome content, adversely affects the proteostasis network by dysregulating the expression of hundreds of proteins simultaneously. Using aneuploid haploid yeast cells as a model, we address whether cells can tolerate large-scale, diverse challenges to the proteostasis network. RESULTS: Here we characterize several aneuploid Saccharomyces cerevisiae strains isolated from a collection of stable, randomly generated yeast aneuploid cells. These strains exhibit robust growth and resistance to multiple drugs which induce various forms of proteotoxic stress. Whole genome re-sequencing of the strains revealed this was not the result of genetic mutations, and transcriptome profiling combined with ribosome footprinting showed that genes are expressed and translated in accordance to chromosome copy number. In some strains, various facets of the proteostasis network are mildly upregulated without chronic activation of environmental stress response or heat shock response pathways. No severe defects were observed in the degradation of misfolded proteins, using model misfolded substrates of endoplasmic reticulum-associated degradation or cytosolic quality control pathways, and protein biosynthesis capacity was not impaired. CONCLUSIONS: We show that yeast strains of some karyotypes in the genetic background studied here can tolerate the large aneuploidy-associated burden to the proteostasis machinery without genetic changes, dosage compensation, or activation of canonical stress response pathways. We suggest that proteotoxic stress, while common, is not always an obligate consequence of aneuploidy, but rather certain karyotypes and genetic backgrounds may be able to tolerate the excess protein burden placed on the protein homeostasis machinery. This may help clarify how cancer cells are paradoxically both highly aneuploid and highly proliferative at the same time.


Asunto(s)
Aneuploidia , Compensación de Dosificación (Genética) , Mutación , Proteostasis , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Estrés Fisiológico/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Biosíntesis de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Mol Cell ; 48(1): 16-27, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23000174

RESUMEN

Lipid composition can differ widely among organelles and even between leaflets of a membrane. Lipid homeostasis is critical because disequilibrium can have disease outcomes. Despite their importance, mechanisms maintaining lipid homeostasis remain poorly understood. Here, we establish a model system to study the global effects of lipid imbalance. Quantitative lipid profiling was integral to monitor changes to lipid composition and for system validation. Applying global transcriptional and proteomic analyses, a dramatically altered biochemical landscape was revealed from adaptive cells. The resulting composite regulation we term the "membrane stress response" (MSR) confers compensation, not through restoration of lipid composition, but by remodeling the protein homeostasis network. To validate its physiological significance, we analyzed the unfolded protein response (UPR), one facet of the MSR and a key regulator of protein homeostasis. We demonstrate that the UPR maintains protein biogenesis, quality control, and membrane integrity-functions otherwise lethally compromised in lipid dysregulated cells.


Asunto(s)
Proteínas Ligadas a Lípidos/metabolismo , Lípidos de la Membrana/metabolismo , Modelos Biológicos , Respuesta de Proteína Desplegada , Homeostasis , Proteínas Ligadas a Lípidos/química , Lípidos de la Membrana/química , Redes y Vías Metabólicas , Fosfatidiletanolamina N-Metiltransferasa/genética , Fosfatidiletanolamina N-Metiltransferasa/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico
5.
Mol Cell ; 42(6): 782-93, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21700223

RESUMEN

Endoplasmic reticulum (ER)-resident mannosidases generate asparagine-linked oligosaccharide signals that trigger ER-associated protein degradation (ERAD) of unfolded glycoproteins. In this study, we provide in vitro evidence that a complex of the yeast protein disulfide isomerase Pdi1p and the mannosidase Htm1p processes Man(8)GlcNAc(2) carbohydrates bound to unfolded proteins, yielding Man(7)GlcNAc(2). This glycan serves as a signal for HRD ligase-mediated glycoprotein disposal. We identified a point mutation in PDI1 that prevents complex formation of the oxidoreductase with Htm1p, diminishes mannosidase activity, and delays degradation of unfolded glycoproteins in vivo. Our results show that Pdi1p is engaged in both recognition and glycan signal processing of ERAD substrates and suggest that protein folding and breakdown are not separated but interconnected processes. We propose a stochastic model for how a given glycoprotein is partitioned into folding or degradation pathways and how the flux through these pathways is adjusted to stress conditions.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glicoproteínas/metabolismo , Manosidasas/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/química , Glicoproteínas/química , Manosidasas/química , Mutación Puntual , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/genética , Desplegamiento Proteico , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
6.
Semin Cell Dev Biol ; 41: 129-34, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25666261

RESUMEN

Nowhere else does the cell employ posttranslational protein modifications as extensively as in the endoplasmic reticulum (ER). In fact, such modifications can comprise the bulk of the mass of a mature protein in some cases. The most common modification is glycosylation, with N-linked glycans being the most commonly studied and best understood. However, the covalent modification of serine and threonine side chains with mannose or O-mannosylation has been gaining interest. Part of the attention comes from the realization that O-mannosylation is a conserved process found in most eukaryotes and defects in O-mannosylation can give rise to human disease. Long known to be important structural modification of some endomembrane system proteins, recent findings reveal that it is a common modification of unfolded proteins. For irreversibly misfolded proteins, O-mannosylation can aid in their disposal through ER or lysosomal pathways. The protein O-mannosylation pathway can also play an instrumental role in monitoring the folding of newly synthesized proteins. Proteins that fail to fold efficiently are O-mannosylated to remove them from harmful futile protein folding cycles and prepare them for disposal. Thus, O-mannosylation joins N-linked glycosylation as a major mechanism involved in the folding and quality control of newly synthesized proteins in the ER.


Asunto(s)
Retículo Endoplásmico/metabolismo , Manosa/metabolismo , Polisacáridos/metabolismo , Procesamiento Proteico-Postraduccional , Retículo Endoplásmico/enzimología , Glicosilación , Humanos , Manosiltransferasas/metabolismo , Modelos Biológicos , Pliegue de Proteína , Saccharomyces cerevisiae/metabolismo
7.
Proc Natl Acad Sci U S A ; 108(51): 20597-602, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22143797

RESUMEN

Stress pathways monitor intracellular systems and deploy a range of regulatory mechanisms in response to stress. One of the best-characterized pathways, the unfolded protein response (UPR), is responsible for maintaining endoplasmic reticulum (ER) homeostasis. The highly conserved Ire1 branch regulates hundreds of gene targets by activating a UPR-specific transcription factor. To understand how the UPR manages ER stress, a unique genetic approach was applied to reveal how the system corrects disequilibria. The data show that the UPR can address a wide range of dysfunctions that are otherwise lethal if not for its intervention. Transcriptional profiling of stress-alleviated cells shows that the program can be modulated, not just in signal amplitude, but also through differential target gene expression depending on the stress. The breadth of the functions mitigated by the UPR further supports its role as a major mechanism maintaining systems robustness.


Asunto(s)
Proteínas Fúngicas/química , Respuesta de Proteína Desplegada , Alelos , Retículo Endoplásmico/metabolismo , Eliminación de Gen , Glicosilación , Modelos Genéticos , Conformación Molecular , Mutación , Fenotipo , Desnaturalización Proteica , Pliegue de Proteína , Transducción de Señal , Temperatura , Transcripción Genética , beta-Galactosidasa/metabolismo
8.
Semin Cell Dev Biol ; 21(5): 533-9, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20178855

RESUMEN

During protein synthesis, the orderly progression of folding, modification, and assembly is paramount to function and vis-à-vis cellular viability. Accordingly, sophisticated quality control mechanisms have evolved to monitor protein maturation throughout the cell. Proteins failing at any step are segregated and degraded as a preventative measure against potential toxicity. Although protein quality control is generally poorly understood, recent research advances in endoplasmic reticulum-associated degradation (ERAD) pathways have provided the most detailed view so far. The discovery of distinct substrate processing sites established a biochemical basis for genetic profiles of model misfolded proteins. Detailed mechanisms for substrate recognition were recently uncovered. For some proteins, sequential glycan trimming steps set a time window for folding. Proteins still unfolded at the final stage expose a specific degradation signal recognized by the ERAD machinery. Through this mechanism, the system does not in fact know that a molecule is "misfolded". Instead, it goes by the premise that proteins past due have veered off their normal folding pathways and therefore aberrant.


Asunto(s)
Retículo Endoplásmico/metabolismo , Animales , Proteínas Portadoras , Retículo Endoplásmico/genética , Proteínas/genética , Proteínas/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Transducción de Señal/genética
9.
J Biol Chem ; 286(33): 29376-29387, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21708947

RESUMEN

The secretory pathway maintains multiple quality control checkpoints. Initially, endoplasmic reticulum-associated degradation pathways monitor protein folding to retain and eliminate aberrant products. Despite its broad client range, some molecules escape detection and traffic to Golgi membranes. There, a poorly understood mechanism termed Golgi quality control routes aberrant proteins for lysosomal/vacuolar degradation. To better understand Golgi quality control, we examined the processing of the obligate substrate Wsc1p. Misfolded Wsc1p does not use routes of typical vacuolar membrane proteins. Instead, it partitions into intralumenal vesicles of the multivesicular body (MVB) pathway, mediated by the E3 ubiquitin ligase Rsp5p. Its subsequent transport to the vacuolar lumen is essential for complete molecule breakdown. Surprisingly, the transport mode plays a second crucial function in neutralizing potential substrate toxicity. Eliminating the MVB sorting signal diverted molecules to the vacuolar limiting membrane, resulting in the generation of toxic by-products. These data demonstrate a new role of the MVB pathway in protein quality control.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de la Membrana/metabolismo , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Lisosomas/genética , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Transporte de Proteínas/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complejos de Ubiquitina-Proteína Ligasa/genética , Vacuolas/genética , Vacuolas/metabolismo
10.
Biochem Biophys Res Commun ; 425(3): 689-95, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22842567

RESUMEN

Proteins trafficking through the endoplasmic reticulum (ER) are topologically diverse. As such, multiple pathways collectively termed ER-associated degradation (ERAD) ensure that protein domains located in the lumen, membrane, and cytosol, are properly folded. The continuous nucleoplasm and cytosol also maintain a network of quality control mechanisms. These center on the Doa10, San1, and Ubr1 ubiquitin ligases. Unlike in the ER, the necessity for multiple pathways here is unclear. With all three factors localized in the nucleus, at least in part, how substrates are individually recognized is unknown. In this study, we show that the mode of biosynthesis can determine the system used for quality control. Targeting and integrating a misfolded protein to the ER membrane makes it an exclusive substrate of Doa10 whereas the soluble form of the same protein makes it a substrate of the San1/Ubr1 E3 system.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Ubiquitina-Proteína Ligasas/metabolismo , Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/metabolismo , Retículo Endoplásmico/enzimología , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
11.
J Cell Biol ; 169(1): 73-82, 2005 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-15809311

RESUMEN

The endoplasmic reticulum (ER) maintains an environment essential for secretory protein folding. Consequently, the premature transport of polypeptides would be harmful to the cell. To avert this scenario, mechanisms collectively termed "ER quality control" prevent the transport of nascent polypeptides until they properly fold. Irreversibly misfolded molecules are sorted for disposal by the ER-associated degradation (ERAD) pathway. To better understand the relationship between quality control and ERAD, we studied a new misfolded variant of carboxypeptidase Y (CPY). The molecule was recognized and retained by ER quality control but failed to enter the ERAD pathway. Systematic analysis revealed that a single, specific N-linked glycan of CPY was required for sorting into the pathway. The determinant is dependent on the putative lectin-like receptor Htm1/Mnl1p. The discovery of a similar signal in misfolded proteinase A supported the generality of the mechanism. These studies show that specific signals embedded in glycoproteins can direct their degradation if they fail to fold.


Asunto(s)
Catepsina A/metabolismo , Retículo Endoplásmico/fisiología , Glicoproteínas/metabolismo , Pliegue de Proteína , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Catepsina A/genética , Retículo Endoplásmico/genética , Glicoproteínas/genética , Glicosilación , Manosidasas/genética , Manosidasas/metabolismo , Polisacáridos , Señales de Clasificación de Proteína/genética , Señales de Clasificación de Proteína/fisiología , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
PLoS One ; 15(5): e0232755, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32401766

RESUMEN

The quality control of intracellular proteins is achieved by degrading misfolded proteins which cannot be refolded by molecular chaperones. In eukaryotes, such degradation is handled primarily by the ubiquitin-proteasome system. However, it remained unclear whether and how protein quality control deploys various deubiquitinases. To address this question, we screened deletions or mutation of the 20 deubiquitinase genes in Saccharomyces cerevisiae and discovered that almost half of the mutations slowed the removal of misfolded proteins whereas none of the remaining mutations accelerated this process significantly. Further characterization revealed that Ubp6 maintains the level of free ubiquitin to promote the elimination of misfolded cytosolic proteins, while Ubp3 supports the degradation of misfolded cytosolic and ER luminal proteins by different mechanisms.


Asunto(s)
Citosol/enzimología , Endopeptidasas/metabolismo , Retículo Endoplásmico/metabolismo , Proteolisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Aneuploidia , Degradación Asociada con el Retículo Endoplásmico , Pruebas Genéticas , Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo
13.
J Cell Biol ; 165(1): 41-52, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15078901

RESUMEN

Misfolded proteins retained in the endoplasmic reticulum (ER) are degraded by the ER-associated degradation pathway. The mechanisms used to sort them from correctly folded proteins remain unclear. Analysis of substrates with defined folded and misfolded domains has revealed a system of sequential checkpoints that recognize topologically distinct domains of polypeptides. The first checkpoint examines the cytoplasmic domains of membrane proteins. If a lesion is detected, it is retained statically in the ER and rapidly degraded without regard to the state of its other domains. Proteins passing this test face a second checkpoint that monitors domains localized in the ER lumen. Proteins detected by this pathway are sorted from folded proteins and degraded by a quality control mechanism that requires ER-to-Golgi transport. Although the first checkpoint is obligatorily directed at membrane proteins, the second monitors both soluble and membrane proteins. Our data support a model whereby "properly folded" proteins are defined biologically as survivors that endure a series of distinct checkpoints.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Pliegue de Proteína , Proteínas/metabolismo , Retículo Endoplásmico/ultraestructura , Glicoproteínas , Aparato de Golgi/ultraestructura , Membranas Intracelulares/metabolismo , Manosidasas/metabolismo , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Estructura Terciaria de Proteína/fisiología , Transporte de Proteínas/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/fisiología
14.
J Cell Biol ; 217(6): 2019-2032, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29653997

RESUMEN

Misfolded cytosolic proteins are degraded by the ubiquitin proteasome system through quality control (QC) pathways defined by E3 ubiquitin ligases and associated chaperones. Although they work together as a comprehensive system to monitor cytosolic protein folding, their respective contributions remain unclear. To bridge existing gaps, the pathways mediated by the San1 and Ubr1 E3 ligases were studied coordinately. We show that pathways share the same complement of chaperones needed for substrate trafficking, ubiquitination, and degradation. The significance became clear when Ubr1, like San1, was localized primarily to the nucleus. Appending nuclear localization signals to cytosolic substrates revealed that Ydj1 and Sse1 are needed for substrate nuclear import, whereas Ssa1/Ssa2 is needed both outside and inside the nucleus. Sis1 is required to process all substrates inside the nucleus, but its role in trafficking is substrate specific. Together, these data show that using chaperones to traffic misfolded cytosolic proteins into the nucleus extends the nuclear protein QC pathway to include cytosolic clients.


Asunto(s)
Citosol/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Modelos Biológicos , Mutación/genética , Pliegue de Proteína , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/química
15.
Mol Biol Cell ; 14(7): 2756-67, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12857862

RESUMEN

The accumulation of aberrantly folded proteins can lead to cell dysfunction and death. Currently, the mechanisms of toxicity and cellular defenses against their effects remain incompletely understood. In the endoplasmic reticulum (ER), stress caused by misfolded proteins activates the unfolded protein response (UPR). The UPR is an ER-to-nucleus signal transduction pathway that regulates a wide variety of target genes to maintain cellular homeostasis. We studied the effects of ER stress in budding yeast through expression of the well-characterized misfolded protein, CPY*. By challenging cells within their physiological limits to resist stress, we show that the UPR is required to maintain essential functions including protein translocation, glycosylation, degradation, and transport. Under stress, the ER-associated degradation (ERAD) pathway for misfolded proteins is saturable. To maintain homeostasis, an "overflow" pathway dependent on the UPR transports excess substrate to the vacuole for turnover. The importance of this pathway was revealed through mutant strains compromised in the vesicular trafficking of excess CPY*. Expression of CPY* at levels tolerated by wild-type cells was toxic to these strains despite retaining the ability to activate the UPR.


Asunto(s)
Catepsina A/metabolismo , Pliegue de Proteína , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Catepsina A/genética , Retículo Endoplásmico/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Glicosilación , Mutación , Biosíntesis de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Regulación hacia Arriba
16.
Mol Biol Cell ; 13(11): 3955-66, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12429838

RESUMEN

Membrane transporter proteins are essential for the maintenance of cellular ion homeostasis. In the secretory pathway, the P-type ATPase family of transporters is found in every compartment and the plasma membrane. Here, we report the identification of COD1/SPF1 (control of HMG-CoA reductase degradation/SPF1) through genetic strategies intended to uncover genes involved in protein maturation and endoplasmic reticulum (ER)-associated degradation (ERAD), a quality control pathway that rids misfolded proteins. Cod1p is a putative ER P-type ATPase whose expression is regulated by the unfolded protein response, a stress-inducible pathway used to monitor and maintain ER homeostasis. COD1 mutants activate the unfolded protein response and are defective in a variety of functions apart from ERAD, which further support a homeostatic role. COD1 mutants display phenotypes similar to strains lacking Pmr1p, a Ca(2+)/Mn(2+) pump that resides in the medial-Golgi. Because of its localization, the previously reported role of PMR1 in ERAD was somewhat enigmatic. A clue to their respective roles came from observations that the two genes are not generally required for ERAD. We show that the specificity is rooted in a requirement for both genes in protein-linked oligosaccharide trimming, a requisite ER modification in the degradation of some misfolded glycoproteins. Furthermore, Cod1p, like Pmr1p, is also needed for the outer chain modification of carbohydrates in the Golgi apparatus despite its ER localization. In strains deleted of both genes, these activities are nearly abolished. The presence of either protein alone, however, can support partial function for both compartments. Taken together, our results reveal an interdependent relationship between two P-type ATPases to maintain homeostasis of the organelles where they reside.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Adenosina Trifosfatasas/metabolismo , ATPasas Transportadoras de Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Glicoproteínas/metabolismo , Aparato de Golgi/metabolismo , Homeostasis , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , ATPasas Transportadoras de Calcio/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/genética , Peroxinas , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Transporte de Proteínas/fisiología , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/fisiología , Especificidad por Sustrato
17.
Science ; 340(6135): 978-81, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23704572

RESUMEN

Newly synthesized polypeptides fold and assemble with assistance from protein chaperones. Full maturation can take multiple attempts, exchanging chaperones at each round. Improperly folded molecules must exit folding cycles and be degraded. In the endoplasmic reticulum (ER), prolonged substrate cycling is detrimental because it expends chaperone and energy resources and increases toxic reactive oxygen species. In budding yeast, we found that unfolded protein O-mannosylation terminated failed folding attempts through the Pmt1/Pmt2 complex. O-mannosylation incapacitated target molecule folding and removed them from folding cycles by reducing engagement with the Kar2 chaperone. In an in vitro protein refolding assay, the modification intrinsically and irreversibly disabled the folding potential of the substrate. Thus, protein folding termination can involve a covalent glycosylation event.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Manosa/metabolismo , Pliegue de Proteína , Saccharomyces cerevisiae/metabolismo , Respuesta de Proteína Desplegada , Glicosilación , Proteínas Fluorescentes Verdes/metabolismo , Manosiltransferasas/genética , Manosiltransferasas/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-23209158

RESUMEN

Protein misfolding is a common cellular event that can produce intrinsically harmful products. To reduce the risk, quality control mechanisms are deployed to detect and eliminate misfolded, aggregated, and unassembled proteins. In the secretory pathway, it is mainly the endoplasmic reticulum-associated degradation (ERAD) pathways that perform this role. Here, specialized factors are organized to monitor and process the folded states of nascent polypeptides. Despite the complex structures, topologies, and posttranslational modifications of client molecules, the ER mechanisms are the best understood among all protein quality-control systems. This is the result of convergent and sometimes serendipitous discoveries by researchers from diverse fields. Although major advances in ER quality control and ERAD came from all model organisms, this review will focus on the discoveries culminating from the simple budding yeast.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/fisiología , Retículo Endoplásmico/fisiología , Modelos Biológicos , Pliegue de Proteína , Proteolisis , Saccharomycetales/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Retículo Endoplásmico/metabolismo , Complejo de la Endopetidasa Proteasomal/fisiología , Especificidad por Sustrato , Ubiquitinación
19.
Mol Biol Cell ; 23(4): 630-41, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22190740

RESUMEN

The unfolded protein response (UPR) monitors and maintains protein homeostasis in the endoplasmic reticulum (ER). In budding yeast, the UPR is a transcriptional regulatory pathway that is quiescent under normal conditions. Under conditions of acute ER stress, activation of UPR targets is essential for cell viability. How individual target genes contribute to stress tolerance is unclear. Uncovering these roles is hampered because most targets also play important functions in the absence of stress. To differentiate stress-specific roles from everyday functions, a single target gene was uncoupled from UPR control by eliminating its UPR-specific regulatory element. Through this approach, the UPR remains intact, aside from its inability to induce the designated target. Applying the strategy to the major ER chaperone Kar2p/BiP revealed the physiological function of increasing its cellular concentration. Despite hundreds of target genes under UPR control, we show that activation of KAR2 is indispensable to alleviate some forms of ER stress. Specifically, activation is essential to dispose misfolded proteins that are otherwise toxic. Surprisingly, induced BiP/Kar2p molecules are dedicated to alleviating stress. The inability to induce KAR2 under stress had no effect on its known housekeeping functions.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Proteínas Fúngicas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Respuesta de Proteína Desplegada , Estrés del Retículo Endoplásmico/genética , Proteolisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología
20.
Methods Enzymol ; 491: 199-216, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21329802

RESUMEN

The unfolded protein response (UPR) is an intracellular signal transduction pathway that monitors endoplasmic reticulum (ER) homeostasis. Activation of the UPR is required to alleviate the effects of ER stress. However, our understanding of what physiologically constitutes ER stress or disequilibrium is incomplete. The current view suggests that stress manifests as the functional capacity of the ER becomes limiting. To uncover the range of functions under the purview of the UPR, we previously devised a method to isolate mutants that (1) activate the UPR and (2) require UPR activation for viability. These mutants that represent functions, when compromised, cause specific forms of disequilibrium perceived by the UPR. Making UPR activation essential to these mutants ensures a stringent physiological link and avoids stimuli causing nonproductive UPR activation. Thus far, the screen has revealed that the range of functions monitored is surprisingly diverse. Beyond the importance of the screen to understand UPR physiology, it has proven to be useful in discovering new genes in many aspects of protein biosynthesis and quality control.


Asunto(s)
Retículo Endoplásmico/genética , Técnicas Genéticas , Mutación , Proteínas/genética , Respuesta de Proteína Desplegada , Animales , Clonación Molecular/métodos , Retículo Endoplásmico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Inmunoprecipitación/métodos , Proteínas/metabolismo , Transducción de Señal , Levaduras/genética , Levaduras/metabolismo , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA